
-777Ey- V-7

AD-A198 429

RADC-TR-88-1 7
Final Technical Report
February 1988 4~

NETWORK MANAGEMENT OF HIGHLY
ADAPTIVE COMMUNICATION
NETWORKS

Southeastern Center for Electrical Engineering Education

Jeffery L. Kennington, Richard V. Helgason and John M. Colombi, WL, USAF

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This effort was funded totally by the Laboratory Directors' fund.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

882.5 194'

.................

*t - x W WT

b

RADC-TR-88-17 has been reviewed and is approved for publication.

I ~APPROVED: 9A 4 l c

JOHN M. COLOMBI, 2Lt, USAF
*- Project Engineer

* Ai-APVROVED:

BRUNO BEEK
Technical Director
Directorate of CommunicationsS

FOR THE COMMANDER:

j JAMES W. HYDE, III
Directorate of Plans & Programs

DESTRUCTION NOTICE - For classified documents, follow the procedures in DOD
-5 200.22-M, Industrial Security Manual, or DOD 5200.1-R, Information Security

Program Regulation. For unclassified limited documents, destroy by any
* method that will prevent disclosure of contents or reconstruction of the

document.

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (DCLD) Griffiss AFB NY 13441-5700. This will assist us in

* maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

-'I - -A X, Al *e 2e * i r.

-k UNCLASSIFIED

SECURITY CLASSFICA'ION QF r .,S PAGE

REPOT DOUMETATIN PAE IForm Approved
'a RPORESPORIT CLASSIFICATION PAG 0M No 0704-0188

la RPOR SEURIY CLSSIICAIONlb RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
2a. SECUPITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

iNI

U DECLASS DOWNGRADING SCHEDULE Approved for public release;

NFA distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-17

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
% Southeastern Center for (If applicable)

* Electrical Engineering Educatio Rome Air Development Center (DCLD)
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Central Florida Facility

S1101 Massachusetts Avenue Griffiss AFB NY 13441-5700
St. Cloud FL 32769

8a. NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center DCLD F30602-81-C-0193

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO NO NO ACCESSION NO
61101F LDFP 15 P

11 TITLE (Include Securrty Classification)

NETWORK MANAGEMENT OF HIGHLY ADAPTIVE COMMUNICATION NETWORKS

12 PERSONAL AUTHOR(S)

Jeffrey L. Kennington, Richard V. Helgason, John M. Colombi, 2Lt, USAF

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM Aug 86 TO Jul 87 Ftbruary 1988 128

16. SUPPLEMENTARY NOTATION

This effort was funded totally by the Laboratory Directors' fund.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesary and identify by block number)
FIELD GROUP SUB-GROUP Operations Research Communications Networks

17 02 Parallel Processing Network Flow Problems

Linear Proqrgmninv
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

* This report documents networking models, network solutions, programming techniques for
parallel processing, and parallelized algorithm comparisons. Several papers are contained
in the report. An operational research model and associated mathematics are presented for a
three node network. A multi-media nodal simulation is developed to optimally assign trunks.
A new mathematical approach is shown for solving equal flow problems. This technique makes
greater use of the side constraints structure with computational solutions given. Also
developed are the mathematical theory and justification of using the quadrant interlocking
factorization for solving the simplex algorithm on a parallel processor. Lastly, computa-
tional results of solving minimal spanning tree problems, on a parallel processor are
presented.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

QUNCLASSIFIED/UNLIMITED [3 SAME AS RPT [DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL
John M. Colombi, 2Lt, USAF (315) 330-7751 RADC (DCLD)

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

,s_ -. * Jim 4-

i, N N. ..,,:2..

" ." ." ." ." ' .'' '.€ 'J ~ ' - # . ' , , " ' ..? .: , _ , e . ' 'tZ. %;' , ...: . .S . , v ' '. , ',, , . . ' ,
.a. ,*_a. ,'._r~u' .r,,, ,.",.'r~, Jj, r~x) .'2 - .% , . , _.'' . , ?a' e ' "'-" ,"_'I~'. ', e, ,= .. ., , ,-,'- ., • -. ,. .,

ACKN OWLEDGEMENT

This r es ea rch was supported in part by the Rome Air
D ev elopment C ent er under contract number F30603-81-0193.
Funding was made available through the Laboratory Director's

* Fund Program.

Aoeession For

NTIS R&
DTIC TAB
Unannounced [
Justif'icationI

By
Distribution/

AIv'alability Codes

Dist sei.

% ,

,
TABLE OF CONTENTS

~pag
e"- "1 INTR ODU CTI ON

1
' .i2 SC OP E

2
3 CONCLU SION S

2
i APPENDIX A OPERATIONS RESEARCH MODEL A-141%" APPENDIX B LINEAR EQUAL FLOW PROBLEM

B-1

APPENDIX C OPTIMAL TRUNK ASSIGNMENT SIMULATION C-1
'"APPENDIX D PARALLELIZATION OF THE SIMPLEX METHOD D-1
'"APPENDIX E MINIMAL SPANNING TREES

E-1

l

,.

v-

i

0

i'
'p

I INTRODUCTION

This report details the work accomplished under the US

Air Force, Rome Air Development Center Contract No.
F30602-81-C-0193. The twelve month Post Doctoral effort used
as a foundation the education of the Department of Operations

p. Research, School of Engineering and Applied Sciences at
Southern Methodist University, Dallas, Texas. The principal
investigator was Dr. Jeffery L. Kennington.

The objective was to take optimization theory developed
by the Air Force Office of Scientific Research for solving

multi commodity problems, and apply it to the topic of

communication network management. Under Project Forecast

* II (PFII), a concept for a highly adaptive communication

network was developed. This complex and survivable network

will require new techniques for managing its available
resources. These results will further develop classes of

algorithms that can manage this network. The results
contained are a compilation of five separate reports,

* contained in Appendices A - E.

V

2 SCOPE

The structure of this report not only reflects the work
done, but the evolution of this work, as well. Initially,
efforts concentrated on modelling communication networks and
later progressed into algorithm development for high
performance computer architectures.

Appendix A summarizes an initial OR model for a three

node network. The solution makes use of a commodity based
supply and demand model.

Appendix 3 is a new technique for handling network flow

solutions. In particular, the method is a means for solving
linear equal flow problems, by more eiiiciency utilizing the
special structure of the side constraints. Computational
solution time results are given.

Appendix C summarizes the development of an optimization
model for a single communications node having multiple media.
This code provides an initial capability for examining node
managment and its functions. Incorporated into the model

* are capacity and delay constraints.

Appendix D is a Ph.D. dissertation of Dr, Hossam Zaki
who was supported. on this effort. This report presents the
quadrant interlocking factorization for solving the simplex
algorithm for linear problems on parallel machines. Included
in the report are the relevant justifications and algorithms
required for implementation.

Appendix E contains computational results of work done
on a tw enty-CPU Balance 21000 computer. Algorithms for
solving minimal spanning trees were investigated.
Comparisons of sequential and parallel solutions for these
algorithms are presented.

3 CONCLUSIONS

. As presented in many of the references, much work is
being accomplished in OR techniques for a variety of
applications. Many more communications network management
functions and networking problems are being near optimally
handl ed.

0

0.

", . %~ ~~

The next major efficiency increase appears to be found
in more powerful computer architectures with new
supercomputing" algorithms. One specific application which

needs development is communication algorithms for parallel
processing machines, and the last two reports are examplary
work in this area. Initial summaries reflect that a possible
sub-optimal algorithm may prove more efficient for use on a

V- multiple CPU architecture.

Under the Project Forecast II Program, class es of
network algorithms are needed to manage the PF II type of
network. This network may incorporate parallel processors to
perform a variety of user and resource managment functions.
This work and further developments will feed into the design
and implementation of the specific algorithms to be
incorporated in the Project Forecast II 62702F Program.

N"

°-%

W Q Q Q,

~APPENDIX A

$ AN OPERATIONS RESEARCH MODEL

, R. V. Helgaso

. J.L. Kennington

~Department of Operations Research
,, Southern Methodist University

Dallas, Texas 75275

-A

e.APPENDIX

e

This report gives an example of an adaptive communication network and an

operations research model which could be used to solve it. Consider the

3 node communication network given in Figure 1.

-. - Suppose lines 1,3,5,6,7 are telephone lines and 2 and 4 are micro wave links.

--: Suppose the message table is:

-. T
1 2 3 Totals

1.- 5 2 7

2 1 0 1

3 4 7 -11

Totals 5 12 2

That is, 5 messages must be sent from node 1 to node 2 during the next time

period.

We model this using 3 commoditites (one for each origin node). Then the supply

and demands are as follows:

.
A-2

'R. V N.

Z
6w Vd VW

A-

'%%

I

I

* 7

~Figure 1

" A- 3

t

Commodity 1 2 3

Supply
Node 1 7 0 0
Node 2 0 1 0
Node 3 0 0 11

Demand
Node 1 0 1 4
Node 2 5 0 7
Node 3 2 0 0

Requirement (Supply - Demand)
Node l 7 -1 -4
Node 2 -5 1 -7
Node 3 -2 0 11

Suppose that node 1 can communicate with node 2 using either telephone lines or

micro wave links, but not both and that node 1 can communicate with node 3

using either telephone lines or micro wave links, but not both. Then the

management decisions are to determine which edges to use and how many messages

should be assigned to each link. Note that messages going from 1 to 2 can go

from 1 to 3 and then from 3 to 2

We now define a mathematical model corresponding to this example.

Subscripts

k - denotes the commodity (origin node).

i - denotes the node.

j - denotes the edge.

Constants

ck- denotes the cost of sending one message originating at k along j.

uj - denotes the capacity of edge j.

A - denotes the node-arc incidence matrix corresponding to the graph.

A-. M - denotes the sum of all supplies for all commodities.

A-4

J.- , ,'"

For this example:

(edges)

1 1 1 1 0 0 -1 (node1)
A -1 -1 0 0 1 -1 0 (node 2)

0 0 -1 -1 -1 1 1 (node 3).

M = 19.

rk - denotes the requirement at node i of commodity k.i

rk - denotes the vector of requirements for commodity k.

For this example:

-7 -71-4
r -5 r2 1 r 3 = -7

-2 , 0 11

fj - denotes the fixed cost for using edge j.

n - denotes the number of edges.

m - denotes the number of nodes.

- Decision Variables

* yj - 0, if edge j is not used and 1 otherwise.

x- denotes the flow of commodity k on edge J.

0

A-5

0%
%, %

:V

The Model

I~ k kminimize Z c. x. +~ f.()
k=l j=l J J j=l J

k k

Zx. < 0,a . j (7)

E 0 1), al ji . (8)

Costait (4 enur tha 1 1(faymsagsaeasgndt)dej

3 4

,44k

x.>0,alj1 7

SJ

Y ,) alj 8

.4.

Costait (2- enueta6h esgsbgnadtriaea h orc

0

A-6 - .

4"'~ %".

A feasible solution to this prcblem may be:

N-5

i1

-4j edge 4
'p

,'. [6 , o , 0,[1, ,1o

edge 7

1xi, Ix~

3

ri

Note that 2 messages were transmitted from node 1 to node 3. One used edges 1

and 5 and the other used edge 4.

,-

-:.:

APPENDIX B

THE LINEAR EQUAL FLOW PROBLEM

Agha Iqbal Ali

Department of General Business
* The University of Texas at Austin

Jeff Kennington

Department of Operations Research
Southern Methodist University

Bala Shetty

Department of Business Analysis

Texas AM University

- -,-p

/,¢

P-P

€" B-I

%0.

-V

ACKNOWLEDGEMENT
'. 44,

This research was supported in part by the Air Force Office of Scientific Research under

Contract Number AFOSR 83-0278, the Department of Defense under Contract Number MDA

903-86-C-0182, and Rome Air Development Center under Contract Number SCEEE PDP/86-75.
,-,.

PREFACE

This paper presents a new algorithm for the solution of a network problem with equal flow side

constraints. The solution technique is motivated by the desire to exploit the special structure of the

side constraints and to maintain as much of the characteristics of pure network problems as possi-

ble. The proposed algorithm solves the equal flow problem using two sequences of pure network

problems. One sequence corresponds to computing a lower bound while the other corresponds to

computing an upper bound. Step sizes exist such that both bounds converge to the optimal ob-

jective value. Termination when the difference between the bounds is within a prespecified toler-

ance is a particularly attractive feature of the solution procedure employed. The algorithm has been

tested on problems with up to 1500 nodes and 6000 arcs. Computational experience indicates that

feasible solutions whose objective function value is within 10% of the optimum can be obtained

in 6% of the time required for MPSX to obtain an optimum. Guaranteed 5% solutions can be

obtained in 17% of the MPSX time.

."B-2

04.* 444

-4-.II

*,mill2

mo

- -VRW'IVWIV IN, WXl V~l V' b-. - -L'-V~rV _

1. INTRODUCTION

This paper presents a new technique to solve the linear equal flow problem. The problem

is easily conceptualized as a minimal cost network flow problem with additional constraints on

certain pairs of arcs. Specifically, given pairs of arcs are required to take on the same value. The

,* problem is defined on a network represented by an m x n node-arc incidence matrix, A, in which

K pairs of arcs are identified and required to have equal flow. Mathematically, this is expressed as:

Minimize cx

s.t. Ax b

x, = Xk.K, k = 1,2. K

Iwhere c is a I x n vector of unit costs, b is an m x I vector of node requirements, 0 is an n x I vector

of zeroes, x is an n x I vector of decision variables, and u is an n x I vector of upper bounds. This

mathematical statement of the problem, henceforth referred to as problem P1, assumes that the first

2K arcs appear in the equal flow constraints. This is not a restrictive assumption, since by rear-

ranging the order of the arcs, any equal flow problem with K pairs can be expressed in the above

form. Note that the K pairs of arcs are mutually exclusive, i. e., an arc appears in at most one side

-" constraint. We also assume without loss of generality, that u, = U +K for k = 1,2,...,K.

When the flow in arcs must be integral, the problem is referred to as an integer equal flow

problem. Applications of the integer model include crew scheduling [5)3, estimating driver costs

for transit operations [14), and the two duty period scheduling problem (I 1). The linear equal

flow problem is a natural relaxation for the integer problem and also provides an approximation

*I" to the integer model. The linear model is applicable to problems where integrality is not restrictive.

For example, in federal matching of funds allocated to various projects [4).

B-3

A..

%

7

The linear equal flow problem may be solved using a specialization of the simplex method

for networks with side constaints [3]. It has also been solved by transformation to a nonlinear

programming problem E4]. By exploiting the special structure of the side constraints and the

network structure, this paper develops a new algorithm which results in a decrease in both computer

storage and computation time The procedure employs relaxation and decomposition and solves

the equal flow problem using two sequences of pure network problems, totally eliminating the

computational overhead associated with maintaining a basis matrix. The computational efficiencies

in specialized software for the solution of pure networks also extend to the solution of sequences

-, of minimum cost network flow problems by using reoptimization procedures. The reoptimization

procedures are used in solving the subproblems of the two sequences.

The use of relaxation techniques and/or decomposition techniques in the solution of prob-

' lems with special structure in the constraint set is motivated by potential computational efficiencies.

Glover, Glover and Martinson E 6) address a generalized network problem in which arcs in speci-

fled subsets must have proportional flow. The solution approach is via solution of a series of

problem relaxations and progressive bound adjustment. The underlying principle is shared in the

ensuing development for the equal flow problem.

Lagrangean relaxation has been used to aid in the solution of the integer equal flow problem

.4 in two specific instances. Shepardson and Marsten [I II reformulate the two duty period sched-

uling problem as a single duty period scheduling problem with equal flow side constraints and

integrality constraints on the variables. Tumquist and Malandraki [14) model the problem of

estimating driver costs for transit operations as an integer equal flow problem. In both studies, the

side constraints are dualized and the Lagrangean dual solved using subgradient optimization to yield

a lower bound on the optimal objective value. In C 143 step-size determination during the sub-

gradient optimization process is aided by a line search. The Lagrangean relaxation, of course, does

not enforce the equal flow constraints. The Lagrangean dual for the linear or the integer equal flow

4.4. problem is exactly the same, since the constraint set for the Lagrangean relaxation is identical. This

Lagrangean dual is similar to the quadratic programming problem used in C 4). The similarity lies

B-4

0
,

% % .

-N

in penalizing the violating equal flow constraints. The penalty chosen in the quadratic problem

formulation should be sufficiently large to guarantee convergence to the optimal solution.

The objective of this investigation is to develop and computationally test a new algorithm for

the linear equal flow problem. The solution technique consists of solving two sequences of pure

network problems. One sequence progressively yields tighter lower bounds on the optimal value

by using the Lagrangean relaxation of the equal flow problem with the side constraints dualized.

The second sequence progressively yields upper bounds on the optimal value for the problem and

maintains a feasible solution at all times. This sequence is obtained by use of a decomposition of

the equal flow problem based on parametric changes in the requirements vector. The solution

'S procedure has the added attractive feature that it provides a feasible solution which is known to be

within a percentage of the optimal at all times. As such, the algorithm terminates when a solution

with a prespecified tolerance on the objective function value is obtained.

The solution technique makes use of subgradient optimization in the solution of the lower

and the upper bounding problems. Both the lower and upper bounding algorithms have been de-

veloped in the context of the general subgradient algorithm which is briefly presented in Section 11.

Section III introduces the Lagrangean dual for the equal flow problem and the lower bounding

algorithm. Section IV presents the decomposition of the equal flow problem and the upper

bounding algorithm. The overall procedure which makes use of the algorithms of Sections III and

IV is given in Section V, computational results are given in Section VI and conclusions drawn in

Section VII.

"B-5

,.'

."

II

B-

I

IlI. THE LOWER BOUND

A lower bound on the objective function of the linear equal flow problem, P1, can be ob-

tained by using the Lagrangean dual of the problem. The lower bound is used in the step size de-

termination as well as in termination criteria for the upper bound procedure. Associating the

Lagrange multiplier w, with the kth equal flow constraint and defining the K-vector w = (w, w2,

wK), the Lagrangean dual for PI, referred to as problem DI, may be stated as

maximize h(w)

w E RK

where h(w) = min{cx + 1, Wk(Xt-XK +k) I Ax = b, 0 ! x :- u). Since PI is a linear program,

it is easily established that the optimal objective values of PI and DI are equ-l and that any feasible

solution to DI provides a lower bound on the optimal objective value for P1. For any given value

of the vector w, the Lagrangean relaxation is a pure network problem. The subgradient of h at a

point w is given by the K-vector

1 (x- ,..x - X2K)

where x solves the Lagrangean relaxation at w, given by

{in cx + 1, wk(xk-xK ,) 1Ax = b, 0 : x u).

ALGORITHM I assumed the function f(y) to be convex, whereas h(w) is piece-wise linear

concave. The lower bounding algorithm, ALGORITHM 2, modifies the framework of the previ-

ous algorithm for a concave function. The step sizes used are given by 0 = p, and X, = X.-/ 2.

The algorithm makes use of a scalar, UBND, representing an upper bound for the problem. Since

the solution procedure progressively improves both the lower bound and the upper bound for the

equal flow problem, each time the lower bound algorithm is invoked the value for UBND is ob-

tained from t , upper bound procedure. For this algorithm, we assume that both bounds are

greater than 7cro.

B-6

IT. TIHE SUBGRADIENT ALGORITHM

The subgradient algorithm was first introduced by Shor E 133 and provides a framework for

solving nonlinear programming problems. It may be viewed as a generalization of the steepest de-

scent (ascent) method for convex (concave) problems in which the gradient may not exist at all

points. At points at which the gradient does not exist, the direction of movement is given by a

subgradient. Subgradients do not necessarily provide improving directions and consequently, the

convergence results of Zangwill C 15) do not apply. Convergence of the subgradient algorithm is

assured, however, under fairly minor conditions on the step size.

Given the nonlinear program P0,

Minimize f(y)

s.t. y G

where f is a real-valued function that is convex over the compact, convex, and nonempty set G, a

vector r1 is a subgradient of fat y' if f(y) - f(y') * rl(y - y') for all y e G. For any given y' e G, the

-. set of all subgradients of f at y' is denoted by af(y'). Moving a sufficiently large distance s along

-il can yield a point x = - sT1 such that x 0 G. The projection of the point x onto G, denoted
,

by P E x , is defined to be the unique point y e G that is nearest to x with respect to the Euclidean

norm. Using the projection operation, the subgradient algorithm in its most general form follows:

,B-7

4,

,,

S- -. - -¢_ ., -..-..- _-_. ,. --- ..--..

.~ALGORITHM I: SUBGRADIENT OPTMIZATION ALGORITHM

.4

0 Initialization

Lct yO G,

Select a set of step sizes s., s 1, s2,...
'.

.. i - O.

I Find Subgradient

Let I. E 6f(y').
*If rh - 0, then terminate with y' optimal.

2 Move to new point

y11 .- Ply, - si h)

i - i + 1, and return to step I.

-. There are three general schema which can be used in determining the step size when the

subgradient algorithm is implemented for a specific problem:

4 . i. s

u. s, = k/l11,II2

iii. s, = X(f(y') - F)/llr1l11

where F is an estimate of f, the optimal value of f over G. A summary of the known convergence

results for this algorithm may be found in C"2] and 1 10].

B-8

01

ALGORITHM 2: LOWER BOUND ALGORITHM

I Initialization

Initialize UBND, step size p, and tolerance E.

w 4-- 0.

2 Find Subgradient

Let x solve h(w) = min(cx + X.k Wk(X-XKk) IAx - b, 0 < x u).

LBND ,- h(w).

If (UBND - LPND) < E(UBND), terminate; otherwise,

d .- (x- xK , ,xK- X20.

3 Move to new point

(a) w - w + pd, p -p/2.

(b) Go to step 2

B3-9

4

IF..

IV. THE UPPER BOUND

-el An alternate formulation of problem P1, referred to as P2, obtained by decomposing the

problem is given by

Minimize g(y)

s.t. yES

where for any vector y = (Y., y2 YK),

g(y) = (min cx lAx - b; 0< x !; U; xt=xKIk=yk, k=

and,

S = {y 10 y, ! u, fork = 1,2,...,K).

The decomposition assures the satisfaction of the equal flow constraints. The decomposed problem

P2 is equivalent to the problem PI [12) and may be solved using a specialization of the subgra-

V ,dient optimization algorithm. The objective function is piece-wise linear convex and the subgra-

dient r of g at a point y is obtained from the dual variables, v,, i = 1,2,...,2K, associated with the

equal flow constraints in the subproblem, referred to as P3 and given by,

Minimize cx

st. Ax - b

x1 = yi (vI)

x. = y, Nv - 1)

xx = YK (vK)

'.4 X2K = YK (VJK)

0 U

%-%
L•

- The K-vector

= (v , ,v 2 + . . .V + v 2 0

is a subgradient of g at = (y Y,)' K)-

The dual variables v k, k = 1,2. 2K may easily be constructed from the solution to the pure

network problem, referred to as problem P4;

(mincx IAx = b,y < x : 0),

where the lower and upper bound n-vectors y and 0 are defined by

It = Ok V= , k = 1,2 . K

YK.k
= 0 K-k yk, k = 1,2,..., K

Yk-' 0 0 , = uk , k 2K +]...,n.

"- Let n be the vector of optimal dual variables associated with the conservation of flow constraints,

Ax = b in P4 and the arc associated with the variable x1 be incident from node j, and incident to

node j, The optimal dual variables for P3 are given by,

vk = -rk, + kt + c,, k = 1,2..,2K.

In using the subgradient optimization algorithm for the decomposed problem at each point y, the

subgradient il can be calculated directly using the above development.

It is possible that moving a step along the negative subgradient yields a point which does not

belong to the set S. As pointed out in Section 1I, this point is projected onto the set S by means
.J-. of a projection operation in the algorithm. For this model, the projection operation decomposes

* on k so that PEy) = (PEy , PEy,] . . .PEy) where the projections PEyk] are defined by:

If y' < 0, PEy')] 0.

If Y > u , P y = u .

* IfO y < , PEyk] = y,

B-l1

%

.. %5

%
%-

% % %
1*%" %

The subgradient optimization algorithm for problem P2 makes use of a lower bound, LI)ND, on

'V the optimal objective value which is used in step size determination using a variant of scheme (iii)

given in Secti-n 11, as well as in thc termination criterion each time the procedure Is invoked.

Again, we as, rme that both bounds are greater than zero.

ALGORITHM 3: UPPER BOUND ALGORITHM

'V* I Initialization

- Select V r:S.

Initialize LBND and c.

2 Find subgradient and step size

Let x and [I be the vectors of optimal primal and dual variables

0for Min (cx Ax - b, y x 0.

UBND -cx.

If (UJIND -LOND) (UJBIND), terminate with x optimal;

otherwise,

4- k + lk, + ck, k = 1,2,...,2K.

3 Move to nex, point

(a) y 4- PC y -((UBND - LBND)/(2I1l111))n]

(b) Go to 2.

- -, B- 12

.A0

%

0%
% % %%.

V. THE ALGORITHM

The solution of the equal flow problem using decomposition, as given in the previous section

can be implemented without the lower bound procedure. It is also possible to implement the lower

bound algorithm independently for the purpose of obtaining a lower bound on the optimal value

of the equal flow problem. For the upper bound problem, some measure of the lower bound on

the problem must be used to aid in termination. By merging the two procedures, an algorithm

which adjusts the lower and upper bounds progressively can be used to advantage. Not only can

such a procedure be used for obtaining feasible solutions with relative ease, but it can also provide

a measure of how close this solution is to the optimal.

The algorithm for the solution of the equal flow problem iterates between the lower bound

procedure and the upper bound procedure. The lower and upper bounds, LBND and UBND,

progressively become tighter, closing in on the optimal solution to the problem. Each time the
-lower bound procedure is invoked, a maximum of ITERL iterations are performed. Each time the

upper bound procedure is invoked, a maximum of ITERU iterations are performed. The tuning

parameters for the algorithm are as follows: ITERL, ITERU, 1 (the initial step size), and E (the

termination criterion.)

-U..

iB-13

% ,,

I'-

X B- 13
6

6-.,..-:.- '-''..-'''-..' ' '¢,..:.'-.'-.'.. .' '-,, . ,', , ,. '-" ,_. , . '

07x I

ALGORITHM 4: RELAXATION/DECOMPOSITION ALGORITHMI

FOR THE EQUAL FLOW PROBLEM

0 Initializauion

* Initialize ITERL, ITERU, p, c

T - 0, R ~- 0, w +- 0, UBND +- 00, LBND -- 0

I Compute Lower Bounds

(a) Call ALGORITHM 2 (Steps 2 and 3 (a)).

(b) T+- T+ I

If T - ITERL, then go to step 1 (a).

2 Compute L ""'er Bounds

(a) Call ALGORITHM 3 (Steps 2 and 3 (a)).

(b) R -R+ I

If R < ITERU, then go to step 2 (a).

3 Reset iteration counts

T +- 0, R s- 0, and go to step 1.

The initial equal flow allocation in the upper bound procedure makes use of the solution x to the

last pure network flow problem solved in the lower bound procedure. The allocation for each of

the K pairs of equal flow constraints is determined by:

Yk minI U~k I (Xk + XK -0/
2 1 k =12K

All subsequent entries into Step 2 of the upper bound procedure use the most recent equal flow

alor-ation in the previous upper bound iteration.

B- 14

%

N. %

VI. COMPUTATIONAL RESULTS

The computer implementation of the algorithm is written in standard FORTRAN and not

tailored to either the machine or FORTRAN compiler used for testing. The implcmentation, called

EQFLO, makes use of MODFLO E l! to solve pure network subproblems. MODFLO is a set

of subroutines which may be used to solve a network problem as well as reoptimize after problem

data changes. Based on NETFLO E 8), this code allows the user to change costs, bounds and/or

requirements for a network problem and reoptirize.

The algorithm has been tested on a set of 10 test problems randomly generated using

NETGEN [9), a large-scale network problem generator. The parameters used to generate test

problems are described in Klingman, Napier, and Sttz [9). The test problems have between 200

and 1500 nodes, and between 1500 qnd 6600 arcs. For each problem, the first 2K arcs were paired

to form K equal flow side constraints. In order to gauge the performance of the algorithm for

various values of K, some of the problems were generated using the same base network problem

data with K varying from 75 to 200. The benchmark NETGEN problems have a specified per-

centage of arcs which are uncapacitated. For these arcs, the capacity was defined to be the maxi-

- mum of all supplies and demands.

Computational testing was carried out on the IBM 3081D at Southern Methodist University

using the FORTVS compiler with OPT = 2. In order to assess the computational gains afforded
by the decomposition/relaxation algorithm for the equal flow problem, each problem was solved

using MPSX C 7). An additional point of interest which was addressed is the choice of model for

the equal flow problem when using a general linear programming system such as MPSX.

* The equal flow problem ran also be formulated as a network with side columns. For an equal

flow problem defined on a network with m nodes, n arcs and K equal flow pairs, the side constraint

formulation uses m + K constraints and n variables. The side column formulation has m con-

* straints and n - K variables. It is best defined by partitioning the node-arc incidence matrix A -

B-"15

I
'p

.4 - - " ' ' . .' e , e ," e ,- ,. -. r,.. .

ET:N] where T is m x 2K and N is m x n-2K. The matrix T contains the first 2K columns of

A, which corrcspond to arcs appearing in equal flow constraints. Thc side column formulation is

given by

minimize fv + gz

st. Sy + Nz - r

where, letting t, and s, denote the ith columns of T and S,

Sk = k + tK~k, k = 1,2,...,K

fk = c4 + CK- k, k =

Uk = ut, k = 1,2,....K.

Table I details the computational testing of the algorithm with parameters ITERL = 15,

ITERU = 10 and p = .005. Of the 10 problems used, the first three are transportation problems

(problems 5, 9, and 10), the next four are capacitated transshipment problems (problems 20, 21,

24, and 25) and the last three are uncapacitated transshipment problems (problems 28, 30, and 35).

The test problems were formulated using both the side columns model and the side constraint

model. Both models were solved using MPSX with default tuning parameters. The side column

formulation ran slightly longer than the side constraint formulation on MPSX, even though it uses

75 fewer constraints and 75 fewer columns for the test problems in Table I.

For the test problems, EQFLO obtained feasible solutions whose objective function values

were within 10% of the optimal in one-sixteenth of the time required by MPSX to obtain an op-

timum. For the equal flow problem with 400 constraints, 2692 arcs and 75 equal flow pairs, a 10%

solution as wel as a 5% solution are obtained in one-hundreth of the time required for solution

by MPSX. For the 1500 node problem with 5880 arcs a 5% solution was obtained in 6% of the

time required by MPSX. Guaranteed 5% solutions across all problems were obtained in about

one-seventh of the MPSX time.

B-i16

0

V %,
%- ,. ,.. .,,., ,,.. , , . %, %, .

0 To determine the behavior of EQFLO as the number of side constraints increases and the

stopping tolerance decreases, additional testing with problems 21, 24, and 28 was performed. Each

of these base problems was used to generate equal flow problems with 75, 100, 150, and 200 equal

flow constraints. The corresponding side column model was also generated. Table II summarizes

the computational experience. The new algorithm performs favorably, when compared to MPSX,

in obtaining guaranteed 5% solutions. For the 400 node problem with 2904 arcs and 100 equal

flow contraints, a 1% solution is obtained in 3% of the time required by MPSX.

B- 1

int

% ,

"%
L4.

5,:

* B-17

I 5
'f./

Table I. Comparison of EQFLO with MPSX (All Problems Have 75 equal flow pairs).

Problem Description MPSX Time in seconds) EQFLO Time (in seconds)
Formulation

NETGEN Side Side
Number Nodes Arcs Constraints Columns 10% 5%

" 0T0 S-0-0 T.4 1.0 F 1T-
9 300 6395 36.6 36.0 1.9 8.5

10 300 6611 33.6 33.6 4.4 19.2
20 400 1484 27.0 38.4 0.7 1.8
21 400 2904 67.8 69.0 0.8 0.8
24 400 1398 47.4 46.8 0.8 2.9
25 400 2692 112.8 105.0 1.0 1.0
28 1000 3000 45.6 51.6 2.2 2.8
30 1000 4500 45.6 69.0 14.8 16.9
35 1500 5880 102.0 144.0 4.6 5.8

n-9,7 "60,4 3n 71.-

* Table II. Effect of Decreasing E and Increasing the Number of Equal Flow Pairs.

Problem Description MPSX Time (in seconds) EQFLO Time (in seconds)
Formulation

NETGEN Number Side Side C
Number of Pairs Constraints Columns 10% 5% 3% 1%

21 7T---5 67.8 ---. -- -T-. -UT T
21 100 70.8 87.0 1.0 1.0 1.1 1.9
21 150 78.0 87.6 1.2 1.7 3.2 6.3

* 21 200 76.8 91.8 2.0 10.1 16.3 106.3

24 75 47.4 46.8 0.8 2.8 4.9 29.2
24 100 48.0 52.2 1.4 1.4 29.8 a.
24 150 76.2 51.0 11.7 61.0 144.5 a.
24 200 84.0 52.8 5.8 25.7 108.4 a.

28 75 45.6 51.6 2.2 2.8 8.9 12.0
28 100 42.0 70.1 3.1 3.9 14.4 107.5
28 150 46.2 87.0 4.2 15.2 46.3 a.

* 28 200 66.6 104.4 9.9 19.5 104.4 a.
7W4 3F 4TT .1 M -

a. Problem did not converge after 900 upper bound interations.

0

B-18

0

-V%
V%

6 P M.0 P.

MA. q

0 VII. SUMMARY AND CONCLUSIONS

The equal flow problem lends itself to solution by decomposition and relaxation. The use

of these techniques in the solution procedure developed is advantageous because the essential sol-

ution mechanism required is the solution of sequences of pure network problems. By dispensing

with the working basis required by other techniques, not only are computational efficiencies af-

forded but the natural characteristics of the problem enhanced.

The algorithm can be modified to assist in the solution of the integer equal flow problem.

The lower bound automatically produces integer flows and the projection of the subgradient in the

upper bound routine can be altered to require integrality on the equal flow allocation. Thus this

solution procedure not only provides lower bounds on the integer equal flow problem efficiently,

but it also has the inherent capability of producing feasible integer solutions with ease.

The development for the linear equal flow problem in this paper can be instructive in mod-

elling and solving other network problems with specially structured side constraints such as pro-

portional flow models used in manpower planning. The solution technique is best suited for a

real-world situation in which one must quickly produce near optimal solutions.

r"p

B-19
%

I
J

".B 1

Iq

a4P)\ W~ ~~a 'aC
mi.a u a.~~a a-~a ~

REFERENCES

El3 Ah, A., E. Allen. R. Barr, and J. Kennington, "Reoptimization Procedures for Bounded

Variable Primal Simplex Network Algorithms,' European Journal of Operational Research,

23, 256-263 (1986).

" 23 Allen E., R. Helgason, J. Kennington, and B. Shetty, 'A Generalization of Polyak's Con-

vergence Result for Subgradient Optimization," Technical Report 85-OR-7, Department of

Operations Research, Southern Methodist University, Dallas, Texas, 75275 (1985), to ap-

pear in Mathematical Programming.

[31 Barr, R., K. Farhangian, and J. Kennington, 'Networks with Side Constraints: An LU

Factorization Update," The Annals of the Society of Logistics Engineers., 1, 1, 66-85 (1986).

[4] Beck, P., L. Lasdon, and M. Engquist, 'A Reduced Gradient Algorithm for Nonlinear Net-

0 work Problems," A CM Transactions on Mathematical Software, 9, 57-70 (1983).

C 51 Carraresi, P. and G. GaUo, "Network Models for Vehicle and Crew Scheduling," European

" , Journal of Operational Research," 16, 139-151 (1984).

E61 Glover, F., R. Glover, and F. Martinson, 'The U. S. Bureau of Land Management's New

NETFORM Vegetation Allocation System,' Technical Report of the Division of Informa-

tion Science Research, University of Colorado, Boulder, Colorado, 80309 (1982).

E71 IBM Mathematical Programming System Extended/370 Program Reference Manual, File

No. S370-82, IBM Corp., White Plains, New York (1979).

[8) Kennington, J., and R. Helgason, Algorithms for Network Programming, John Wiley and

Sons, New York (1980).

S. l[9) Kligrnan, D., A Napier, and J. Stutz, 'NETGEN: A Program for Generating Large Scale

'-.' Minimum Cost Flow Network Problems," Management Science, 20, 814-821 (1974).

B-20

'VV

-NS

7,, b F . "

% 0, %,, ,p

0 [10] Poljak, B. T., "A General Method of Solving Extremum Problems," Soviet Mathematics

Doklady, 8, 3, 593-597 (1967).

[III Shepardson, F., and R. Marstcn, "A Lagrangean Relaxation Algorithm for the Two Duty

Period Scheduling Problem," Management Science, 26, 274-281 (1980).

[12] Shetty, B., 'The Equal Flow Problem," unpublished dissertation, Department of OperationsV, N

Research, Southern Methodist University, Dallas, Texas, 75275 (1985).

[13] Shor, N., 'On the Structure of Algorithms for the Numerical Solution of Optimal Planning

and Design Problems," Dissertation, Cybernetics Institute, Academy of Sciences, U.S.S.R.

(1964).

S[14] Turquist, M., and C. Malandraki, "Estimating Driver Costs for Transit Operations Plan-

ning," Joint National Meeting of ORSA/TIMS, Dallas (1984).

.,* ..' [15] Zangwill, W., Nonlinear Programming. A Unified Approach, Prentice Hall, Englewood Cliffs,

New Jersey (1969).

kB-21
a,..

%r- r JK

",°

0 , ,. -, , ' t- r - r ' i xm , ~t,, ~ IM II@ l m llll ll Il I lll l lln lll III

APPENDIX C

OPTIMAL TRUNK ASSIGNMENT SIMULATION
USER'S GUIDE

Jeffery L. Kennington

Richard V. Helgason

Department of Operations Research
Southern Methodist University

Dallas, Texas 75275

John M. Colombi

John J. Salerno

RADC/ DCLD
Griffiss AFB NY 13441-5700

c-1

I. INTRODUCTION

OTAS is a FORTRAN code that simulates the optimal assignment of voice and

data traffic onto the trunks available to a node. Voice and data requests fol-

low a Poisson arrival process and the service duration is exponential. Hence,

at a given clock time one can have a voice request, a data request, or a dis-

connect from a previous request. A request is assigned on the least cost trunk

which has the available capacity and delay requirements.

0

' . N

%-%%

-.-,-.

,2-'-..

,--9- C-

S

I s. . " ,

II. THE MODEL

The integer programming model describes mathematically the criteria for

assigning a service request to an available trunk. If no trunk is available,

the model has no solution and the service is denied in the simulation.

2.1 Subscript

Let i - denote a trunk

2.2 Constants

Let d - denotes the maximum allowable delay of the requested
[•service (micro-secs).

c - denotes the required capacity of the requested service

(K bits/sec).

di - denotes the delay of the ith trunk (micro-secs).

ci - denotes the capacity of the ith trunk (K bits/sec).

ai - denotes the availablity of the ith trunk (%).

ui - denotes the current usage of the ith trunk (K bits/sec).

44 vi - denotes the unit cost for the ith trunk ($ (K bit/sec)).

2.3 Decision Variables

Let xi - be 1 if the service is assigned to trunk i and, 0 otherwise.

2.4 Constraints

(TRUNK CAPACITY)

5 cxi < cia i - ui: for all i.

C- 3

%J

., ."

.s.. * .%

IF0-,

* (DELAY)

dixi < d; for all i

(SELECT ONE)

xi

(INTEGRALITY)

Xi 0, 1; for all i

(OBJECTIVE FUNCTION)

-. minimize Z vixi

% w?

05S

III. INPUT

The input consist of three files corresponding to the service data, the

trunk data, and a control file to manage the simulation length and output.

3.1 Tape 1: Service Input Data

(All data are in free format one entry/line. Please omit decimal points
for integer data.)

Cols Type Name Description

1-80 Integer INTV Inter-arrival time between calls (secs)
(Assume exponential distribution)

- 1-80 Integer SERV Expected call duration (secs)
(Assume exponential distribution)

1-80 Integer INTD Inter-arrival time between data requests
(secs)

1-80 Integer SERD Expected service duration (secs)
-> (Assume exponential distribution)

1-80 Real CAPV Service capacity required for voice
(K bits/sec)

1-80 Real CAPD Service capacity required for data
(K bits/sec)

1-80 Integer DELV Maximum allowable delay for voice service
(micro-secs)

1-80 Integer DELD Maximum allowable delay for data service
(micro-secs)

C-5

• ' a1 ~ *

3.2 Tape 2: Trunk Input Data

(Name must appear in columns 1 through 8. All other data are in free
format one entry/line. Please omit decimal points for integer data. Trunk 2
follows trunk 1, etc.)

Cols Type Name Description

1-80 Character NAME(I) Trunk I name (8 characters)
A, Examples include:

LL w Land Line
SAT - Satellite
HF - High Frequency
LOS - Line of Sight

.-. 1-80 Real CAPAC(I) Trunk I capacity (K bits/sec)

1-80 Integer DELAY(I) Trunk I delay time (micro-secs)

1-80 Integer AVAIL(I) Trunk I availablity (0% - 100%)

1-80 Real COST(I) Trunk I unit cost ($/(K bits/sec))

3.3 Tape 3: Simulation Control Data

(All data are in free format one entry/line. Please omit decimal points
for integer data.)

Cols Type Name Description

1-80 Integer TOTALT Total time of simulation in seconds

1-80 Integer PRINT Level of intermediate output
0 - No output
1 - Print status after 1% of total time

. 2 - Print every event

AC-6

-p.N

A"

% -V

,.-,

FILE: SERVICE DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

60 SECS (60 CALL/HOUR)
240 SECS (4 MINUTES/CALL)
60 SECS (60 DATA REQUESTS/HOUR)

300 SECS (5 MINUTES/REQUEST)
64. K BITS/SEC (VOICE CAPACITY REQUIRED)
9.6 K BITS/SEC (DATA CAPACITY REQUIRED)

250 MICRO-SECS (MAX VOICE DELAY ALLOWABLE)
lwc, MICRO-SECS (MAX DATA DELAY ALLOWABLE)

FILE: TRUNK DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

LL (LAND LINE) TYPE
192 (K BITS/SEC) CAPACITY
100 (MICRO-SECS) DELAY
100 () AVAILABILITY

.0015 (5/K BITS/SEC)) COST
* SAT (SATELLITE) TYPE

128 (K BITS/SEC) CAPACITY
500 (MICRO-SECS)
50 (AVAILABILITY

.0007 (/K BITS/SEC)) COST
HF (HIGH FREQUENCY) TYPE

48. (K BITS/SEC) CAPACITY
250 (MICRO-SECS) DELAY
100 (AVAILABILITY

.0003 (%I/K BITS/SEC)) COST
LOS (LINE OF SIGHT) TYPE

128 (K BITS/SEC) CAPACITY
150 (MICRO-SECS)
85 AVAILABILITY

.0005 (/K BITS/SEC)) COST

FILE: CONTROL DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.O

7200 (SECS) 20 MINUTE RUN
0 PRINT LEVEL

SC-7

I'

.... . - -- S~ . S~. .*~S~ *. S * S - I S. I l-.* Ill-,-. i. .l / -S l 4 * l ili i '.

IV. OUTPUT REPORTS

Three reports are generated by the simulation on files 7, 8, and 9.

Reports 1 and 2 give a summary of the statistics kept on voice and data

service. Report 3 gives a summary of the activity on each trunk. Sample

reports follow:

C-.8

Sr ",V"
C-

O %; --. S .~ *

FILE: REPORT1 DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

IREPORT 1: SERVICE STATISTICS FOR VOICE REQUESTS

INPUT: EXPECTED INTER-ARRIVAL TIME 60 (SECS)

INPUT: EXPECTED DURATION 240 (SECS)

INPUT: REQUIRED CAPACITY 64.0000 (K BITS/SEC)

INPUT: MAXIMUM ALLOWABLE DELAY 250 (MICRO-SECS)

OUTPUT: TOTAL REQUESTS 121

OUTPUT: NUMBER OF BLOCKED REQUESTS 41

OUTPUT: % REQUESTS BLOCKED 33 (Z)
OUTPUT: TOTAL SIMULATION TIME 7239 (SECS)

FILE: REPORT2 DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

IREPORT 2: SERVICE STATISTICS FOR DATA REQUESTS

INPUT: EXPECTED INTER-ARRIVAL TIME 60 (SECS)

INPUT: EXPECTED DURATION 300 (SECS)

INPUT: REQUIRED CAPACITY 9.6000 (K BITS/SEC)

INPUT: MAXIMUM ALLOWABLE DELAY 1000 (MICRO-SECS)
' OUTPUT: TOTAL REQUESTS 124

OUTPUT: NUMBER OF BLOCKED REQUESTS 0

OUTPUT: % REQUESTS BLOCKED 0 (Z)
* OUTPUT: TOTAL SIMULATION TIME 7239 (SECS)

C- 9

o d
-.- % %9

.00 , , .
Pop e) 7

FILE: REPORT3 DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

IREPORT 3: TRUNK USAGE

TRUNK NUMBER: 1

NAME LL

CAPACITY .192.00 (K BITS/SEC)

.44 DELAY 100 (MICRO-SECS)

4 AVAILABILITY 100 (%)

UNIT COST 0.00150 ($/(K BITS/SEC)

T R U N K U T I L I Z A T IO N

UTILIZATION TIME (SECS) % TOTAL TIME
-- -----------

0 0- 10 % 846 11.69
* 11- 20 % 0 0.00

21- 30 % 0 0.00
31- 40 % 1274 17.60
41- 50 % 0 0.00
51- 60% 0 0.00
61- 70 % 2422 33.46
71- 80 % 0 0.00
81- 90 % 0 0.00
91-100 % 2697 37.26

TOTAL 7239

IREPORT 3: TRUNK USAGE

TRUNK NUMBER: 2

NAME SAT

,45, CAPACITY 128.00 (K BITS/SEC)

DELAY 500 (MICRO-SECS)

r AVAILABILITY 50 (M)

UNIT COST 0.00070 ($/(K BITS/SEC)

ra,'.T R U N K U T I L I Z A T 1 0 N

C-10

.1.TRN U LZT O

[l ",#,. .J._e..:,:.."..',.'. , :..,.'.. -- ".--------.-----.----.-----'-.-.------,-,--------------.-.------,-----.---.-- .',, ,,','-. ,.-.',<" , '\

FILE: REPORT3 DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

UTILIZATION TIME (SECS) % TOTAL TIME
------------------------------- ---- ------ ------ ----

0- 10 % 6547 90.44
11- 20 % 152 2.10
21- 30 % 474 6.55
31- 40 % 66 0.91
41- 50 % 0 0.00
51- 60 % 0 0.00
61- 70 % 0 0.00
71- 80 % 0 0.00
81- 90 % 0 0.00
91-100 % 0 0.00

TOTAL 7239

IREPORT 3: TRUNK USAGE

TRUNK NUMBER: 3

NAME HF

CAPACITY 48.00 (K BITS/SEC)

- DELAY 250 (MICRO-SECS)
A-.'

AVAILABILITY 100 (1)

-' UNIT COST 0.00030 ($/(K BITS/SEC)

TRUNK UTILIZATION

UTILIZATION TIME (SECS) % TOTAL TIME
- ------------- ----------------

0- 10 % 144 1.99
11- 20 % 607 8.39
21- 30 % 0 0.00
31- 40 % 1591 21.98
41- 50 % 0 0.00
51- 60 % 1128 15.58
61- 70 % 0 0.0071- 80 % 1709 23.61
81- 90 % 0 0.00
91-100 % 2060 28.46

TOTAL 7239

IREPORT 3: TRUNK USAGE

": C-11

V

% %

.;wl w% w

.1

FILE: REPORT3 DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

TRUNK NUMBER: 4

NAME LOS

CAPACITY 128.00 (K BITS/SEC)

DELAY 150 (MICRO-SECS)

AVAILABILITY 85 (%)

UNIT COST 0.00050 S/(K BITS/SEC)

TRUNK UTILIZATION

UTILIZATION TIME (SECS) % TOTAL TIME

0- 10 % 613 8.47
11- 20 % 147 2.03
21- 30 % 215 2.97
31- 40 0 0.00
41- 50 % 2478 34.23

* 51- 60 % 1170 16.16
61- 70 % 1523 21.04
71- 80 % 1093 15.10
81- 90 % 0 0.00
91-100 % 0 0.00

TOTAL 7239

C

~C- 12
'0.

0

~APPENDIX D

O~i A PAI ALLELIZATION OF THE SIMPLEX METHOD

.

R. V. Helgason

J. L. Kennington

Department of Operations Research

Southern Methodist University
Dallas, Texas 75275

H. A. Zaki

Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champlaign

Urbana, Illinois 61801

D-1

6

ACKNOWLEDGEMENT

This research was supported in part by the Air Force Office of Scientific Research

under Contract Number AFOSR 83-0278, the Department of Defense under Contract

Number MDA 903-86-C-0182, and Rome Air Development Center under Contract

Number SCEEE PDP/86-75.

ABSTRACT

This paper presents a parallelization of the simplex method for linear

programming. Current implementations of the simplex method on sequential

computers are based on a triangular factorization of the inverse of the current

basis. An alternative decompostion designed for parallel computation, called

the quadrant interlocking factorization, has previously been proposed for

solving linear systems of equations. This research presents the the.retical

justification and algorithms required to implement this new factorization in a

simplex-based linear programming system.

_-D-2

,%%

, ..,. -

0 -
. . .. - , - - - . . .- -. . . , -. . . ;i . .. , ' . , - . -,- -. . , %- . "

I. INTRODUCTION

The introduction of parallel computers into scientific computing in the past decade
is the beginning of a new era. The invention of new algorithms will be required to ensure

-. -* realization of the potential of these and future architectural improvements in computers.

Already the use of parallel computers has given rise to studies in concurrency factors,
vectorization, and asynchronous procedures. These have led to multifold increases in

speed over conventional serial machines after the calculations have been rearranged to
take advantage of the specific hardware. This paper presents a parallelization of the sim-

n.. plex algorithm for general linear programs. Our work begins with new results for solving
systems of linear equations and is directed toward the hardware design currently adapted

by Sequent Computer Systems, Inc. of Beaverton, Oregon.

The following notation is used throughout this paper. Let Bi:jkt:i represent a subma-
trix of B composed of rows i through j and columns k through I. If i=J (k=l), we write

!B,.k: (B,:yjk). The jth row (column) of B is denoted by Bj,. (B.,j). The i,jh element of

B is B,.).

The linear programming problem is represented mathematically as follows:

minimize cTx
",,

subject to Ax = b

0 <x u,

where A is a known m by n matrix, all other quantities are conformable, and all vectors
. qare known except x.

The upper bounded version of Dantzig's simplex method for solving the linear pro-

gramming problem may be stated as follows:

Algorithm 1. The Simplex Method

Ar_% e~ -

P. '. 0%e. r% .
',.,,

*1 .-.K) .? ' .*? .. . *; ? . : . ¢:". ; ; 4 , , .y ; y :,S j ,: ,.,:,];,.

0. Initialization

Le' [xB IxN] be a basic feasible solution with A = [B IN]. Let the cost vector

[cE Ic N] and bounds [uB ulN] be partitioned similarly. Assume thatB - I is avail-

able in some factored form. Initialize iter to 0 and the reinversion frequency,

freq.

1. Calculate the Dual Variables (BTRAN)

7t -cB - . (1.1)

2. Pricing

Let K 1 =(j: x = 0 and c -_ N.j < 0),

N= N Nand K={Jx =(u and cN - ., > 0}.

If K1 qj K, = 0, terminate with [xB IxN] optimal;

otherwise, select kE K1 ., K 2 and set

1, if k.J

-1, otherwise.

3. Column Update (FTRAN)

' -- B - N..k (1.2)

4. Ratio Test

A1 4- min { 1 *5
sign (yj) =sign (8) L y { I

* A2 n- rr-n
.sign v')= siI() } I

A - <.-mi AlA2, U

,_ri -0

5. Right Hand Side Update

D-4

o

V

ji %

It TV wl T-- xILM." I WI "IMV Mfi MI -1 RW% " A

.1'1 x B X 5' *
N

If A = uk, return to 1.

A 6. Basis Inverse Update

Let p denote the index of x8 which produced A and set

-Y' /YP ,if i tp
1 - vp ; otherwise,

E +-I -epe T +ieT

S *- EB -1 . (1.3)

7. Reinversion Check

iter +.- iter + 1.

If mod(iter freq) = 0, then refactor B-.

Return to 1 using ffB- as B-1, the current basis inverse.

Two of the most common factorizations of the basis matrix inverse are the product

4.-. form and the elimination form, which correspond to the methods for solution of linear

equations known as Gauss-Jordan reduction and Gauss reduction (LU factorization),
-, respectively, where L is a lower triangular matrix and U is an upper triangular matrix.

The elimination form produces a sparser representation of the basis inverse than the pro-Y .

duct form. and accordingly leads to faster implementation of a simplex iteration and a

considerable savings in storage.

Historically, the elimination form of the inverse, due to Markowitz [1957-1], was

-' -the first LU factorization method and was introduced to preserve sparsity during reinver-

sion. However. once reinversion was completed further pivot operations were handled

,D-5

0. ;.W 5M .a:.

- "using product form. Barels and Golub proposed updaung L and U in a numerically

stabie wvay. (see Bartels [1971-I]). Their updating scheme tends to promote the growth of

nonzeros in U. leadin6 to a potentially severe loss of sparsity. Forrest and Tomlin [1972-

1] designed a different updating scheme for the triangular factors to preserve sparsity at

some sacrifice in numerical stability. Subsequent implementation of the Bartels-Golub

method. designed by Reid [1982-1] and Saunders [1976-1], combine the virtues of accu-

racy and speed.

Several parallel versions of the LU factorization algorithm for solving general linear

systems of equations are presently available (Chen et al. [1984-1] and Dongarra and

Sorensen [1984-2]). All versions are based on restructuring the original serial algorithm

to reveal possible independent tasks that can be carried out concurrently.

*- .-" Evans and Hatzopoulos [1979-I proposed a matrix factorization, called the Qua-

drant Interlocking Factorization (QIF), as an appropriate tool for solving linear systerrs

on parallel computers. The QIF is similar to the LU factorization, but is claimed to be

more suitable for concurrent computation.

This paper presents a parallelization of the simplex method using the QIF. The out-

line of the paper is as follows. In Section II, the QIF is developed. An algorithm for

updating the QIF of B-1 is presented in Section III. Mathematically, the problem is to

efficiently obtain a factorization of T-1 (see step 6 of Algorithm 1.1) from the factoriza-

tion of B-. In Section IV, we develop a parallelization of the reinversion routine used in

step 7 and propose a parallel implementation of both the BTRAN and FTRAN operations

of steps l and 3.

* The parallel algorithms presented in this study are designed for a MIMD parallel

computer that incorporates p identical processors sharing a common memory and capa-

ble of applying all their power to a single job in a timely and coordinated manner. The

* Balance Systems 8000 and 21000 from Sequent Computer Systems are examples of such

machines.

'-6

% %-
,*p* *.%

0%

II. THE QUAL RANT INTERLOCKING FACTORIZATION

In this section we describe a matrix factorization suggested by Evans and Hatzo-

poulos [1979-1] known as the Quadrant Interlocking Factorization (QIF). This decom-

position is designed to solve linear systems on parallel computers (see Evans and Hatzo-

poulos [1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1] and Feilmeier [1982-

1]). The factors and some of their characteristics are described in Secdon 2.1. We show

that any nonsingular matrix can be factorized into its QIF in two ways, the Forward QIF

and the Backward QIF The factorization algorithms are developed in Sections 2.2 and

2.3. The relationship of quadrant and triangular matrices is presented in Section 2.4.

2.1 The Quadrant Interlocking Factors

Consider the following matrix

1 0 ... 0 0
w.0 1 w2.m
W'A w. wI, W3.m-1 W 3^

• ,. W =(2.1)

Wi m_2,1 wi'-2.2 Wm-2.n-1 Wm-2.m

'm - 1.1 0 . . 1 WM .l m
0 0.. 0 1

Note that the non-arbitrary entries of W are given by

t'" 1, =j;

= 0. i= m/2] , j=(i.+1),..... (m-i+l); (2.2)
0, i=rm j=m -i + ... i-1;

where

D- 7

4%

I
w",' e" ./ a" ." ,, --- '-.------- -. . .". . . ".- °..-..".... ..
ig'~~~~~~~~~~~~~~~~~. '_.,,"7" ',-, .-. .. €,... %...-...............- - - -...... ,.'. •.....-.--....., . ,,.,, ,.

[x] = the largest integer not greater than the value of x
.m m+ 1 - [m/2].

Also, consider the matrix

," -1.1 Z l .2 . .• I.M -I ZlI^
0 Z7-Z .. •. Z -1 0

0 0 ... 0 0

Z =(2.3)

0 0 . .. 0 0
A 0 Z. -l.: . . . m-] 0

Z .I Zm.2 . m ,rm -l Zmm

Note that

j=l[(m-1)/2],i=j+1,...,m -j;
0,_,, ,zid = 1 j=[m/12]+2,...,m , i=m+2-j,....,]-1.Zi~j= 0,(2.4)

* Any square matrix may be partitioned by its diagonal and secondary diagonal into

four quadrants. The potentially nonzero elements of W are in the left and right quadrants

%lhiile those of Z are in the upper and lower quadrants. Therefore, we call any square

matrix whose nonzero structure follows (2.1) and (2.2), or one that can be brought to

such a form by row and/or column interchanges a left-right quadrant (LRQ) matrix.

Similarly, any square matrix whose nonzero structure follows (2.3) and (2.4), or one that

can be brought to such a form by row and/or column interchanges is called an upper-

lower quadrant (ULQ) matrix . Examples of W and Z matrices for an odd and an even m

are given below:

Example 2.1 (m =5)

0

D- 8

%0

'8 -k 6t'

. 1 0 0 0 0 .1 1. 2 Z 1.3 Z 1 ,4 Z 1.5
w..1 1 0 0 w 25 0 z 2 z2.3 z2.4 0

S= .3.1 w 3,2 1 w 3,4 w 3.5 ,Z = 0 0 z 3.3 0 0

w4.1 0 0 1 W4.5 0 Z4.2 Z4.3 Z4.4 0
0 0 0 0 1 Z 51Z5.2 Z5.3 Z5.4 Z.5.5

Examole 2.2 (m=6)

1 0 0 0 0 0 Z1.1 Z1.2 Z1.3 Z 1,4 Z 1 5 Z 1 6
w 2 .1 1 0 0 0 WZ 6 0 z 2.2 Z 3 Z2.4 z2.5 0
V 3 1 13.: 1 0 w 3 .5 W3.6 0 0 Z3.3 Z3. 4 0 0

4 . I W4.2 0 1 W4.5 W4, 6 'Z 0 0 Z4 3 Z4 4 0 0
14 '5.1 0 0 0 1 W5.6 0 Z5.2 Z5,3 Z 54 Z 55 0
0 0 0 0 0 1 Z6.1 Z6.2 Z6.3 Z6.4 Z6.S Z6.6

Without loss of generality we assume that m is even. For linear programming, we

% can always append a nonbinding constraint so that the total number of constraints is

even.

The set of all LRQ matrices of order m is denoted by (M,g) and the set of all ULQ

matrices of order m is denoted by 01,;). Let A ERm and X If

(A+1)E{M,)J we say that Aij is a W-elemenr ; otherwise, it is a non-W-element . Simi-

larlh, if A ({MA) we say that Aij is a Z-element; otherwise, it is a non-Z-element.

Pronosition 2.1

(M,.) and {MI are closed under addition, scalar multiplication, multiplication and

inversion.

(The proof of this Proposition may be found in Zaki [1986-1]).

2.2 The Forward Quadrant Interlocking Factorization Algorithm

In this section we present an algorithm which obtains the WZ factorization of any

nonsingular matrix. That is, given a nonsingular matrix B, find W and Z such that

B = WZQ, where Q is a permutation matrix. This factorization is analogous to the LU

D-9

0"

[.Zk, --.. '" " "., ,. , '

factorization in common use in many producdon linear programming packages.

Definiion 2.1

An clementary left-right quadrant (ELRQ) matrix of order m and index k is a matrix of

the form:

Nk =1 ue -/ e - vk.e7 (2.5)

where

I = m-k+l ,kEl,2,...,(m/2)-1, (2.6)
eT'uk=O and eT.vk=0 for i=l,2,....k,ll+l....m. (2.7)

The conditions (2.7) require that the first k and last k components of Uk and vk be zero,

that is. u kand v k have the form:

uk = (0,0..0,u+:1 ,u 2 ,.-k,) r (2.8)

. k = (0,0..0,vk. ,v~,2 , Vrik,0,0 ... 0)7 . (2.9)

In general an ELRQ matrix of order m and index k has the form depicted in Figure

2. 1. Thus. an ELRQ matrix of index k is a LRQ matrix whose only nonidentity columns

are columns k and I (I=m-k+l). ELRQ matrices are easily inverted. It is apparent that

INk)- I =I + ukej+ vk.eT (2.10)

-which is also an ELRQ matrix of index k.

Proposition 2.2

Let

'. N(k)=NIN 2 . N (2.11)

where N i is an ELRQ matrix of index i , i=1,2,...,k. Then N(k) is a LRQ matrix whose

jl and (in-j +lI) columns are those of Ni.

(The proof of this Proposition may be found in Zaki [1986-1]).

S Definition 2.2

'p.

.'- D-1O

0"

'p,.' ," 'Z '-Z .. ,' -- ''' ,-, '-- L ' -"-." -. ' "..'-.". ': "'"-" . - '. - ". --- : . - . -..
'p.'

•., A partially reduced upper-lower quadrant (PRULQ) matrix of index k and order m is a

square matrix whose non-Z elements are zero in columns I through k-I and 1+1 through

i , where k = 1,2,...,m/2 and I =m-k+1. Its general form is shown in Figure 2.2. Note

that B I has no special zero structure and B" '" 2 is an ULQ matrix.

Proposition 2.3

Let B k be a PRULQ matrix of index k. If B k is nonsingular then there exist j I and j2

such that k 5 <1j2 I and

8 = Bjl,. Bj, - B.j .Bj, * 0. (2.12)

Proof

Suppose 5=-0 for every kj I<j 251_. Then Bk.. must be a multiple of Bt.. This contradicts

the assumption that B k is nonsingular.

,4, Permuting the columns of a PRULQ matrix so that certain elements provide a non-

*iq singular 2x2 submatrix is analogous to interchanging rows and columns in matrix inver-

sion to obtain a nonzero pivot element. Now, let Bk be a nonsingular PRULQ matrix of

index k. Let j I and j2 satisfy Proposition 2.3 and define Qk to be the permutation matrix

such that

gk =Bk Qk

where

-k k -k k

B.Ak=B 4j, and B.., =B, 2 . (2.13)

- Let A be any square matrix of order m and let kE(1,...,M12). Define Sk (A) to be the fol-

lowing 2x2 principal submatrix of A

Sk (A) = [A.k AkA,1 (2.14)
A,k A,,,

where I =m-k+l. Using these definitions and Proposition 2.3, it is clear that

Bk = B4 Qk is a nonsingular PRULQ matrix of index k and Sk(ffB) is nonsingular.

4- We now show how one may transform a PRULQ matrix of index k into a PRULQ

0-11

,%

I 'W.,. . " . " .5 " . " . " .." . " " , " . " , " . " . " . , ,," • , .. " , , . " , , , e

0 , , . ". , . - . ' . " . % " ,. ., " . ' . ' .. ' ,.- % ' ." .. ", ,,, " ,,, ', " , ' , " , % ',', ' % ,

k

Nkk

Figure 2.1. Illustraion of thc ELRQ matrix of ordcr m and index k.

k
I

1 0 k
X X

x . . .

-- X X X XX

p.

Figure 2.2. x11usrafion of a PRULQ matrix oforderm and index k.

D- 12

A.. AN N X'o~A X"(~.~!pp
VP- M

7
jl.

i
s \~:p.

matrix of index k+1.

Prorosition 2.4

Let B k be a nonsingular PRULQ matrix of index k and let Q k be the permutation matrix

that interchanges columns k and m-k+l with columns jt and j, respectively, where jt

and j2 are obtained so that they satisfy Proposition 2.3. Let Nk be an ELRQ matrix of

index k whose uk and vk vectors are determined by solving the following (m-2k) 2x2

linear systems

I u v] Sk(gk= [Lk BSi] ,i=k+ 1,...,m -k. (2.15)

Then Bk+1 = Nk Bk Qk is a nonsingular PRULQ matrix of index k+l.

Proof

Since B5 k is nonsingular and Nk is nonsingular, then Bk+1 is nonsingular. Bk+ is a

PRULQ matrix of index k+1 if all non-Z-elements in columns 1 through k and I through

I?, are zero. Since Bk is a PRULQ matrix of index k , we only need to show that the

effect of Nk on L~k is to zero out the non-Z-elements in columns kI. To show this, we

YJ" begin by rewriting (2.15) as

or for i =k +l,k+2,...,m -k

U k " , + v~k "/ k =A' (2.16)

Su" B'6 + v't . (2.17)
'keI

We now consider the non-Z-elements of B.k+.

For i= k + l,k +2....,m -k

k -vSic + Bk=0 by (2.16). (2. 18)

...1'k.B k ~fi.+§ ,=O by (2 .17). (2.19)

D-13

0 .

.r.!

B 'I-=N,.'. =0 forj=l,...,k-1 and I+1....m. (2.20)

Also we note that the desired zeros created in earlier stages in 9fk are not affected by Nk

since fcr i= 1...,k-1,l+ 1,...,m

B .+ =Nk .ffk= ei - B =B '. (2.21)

From (2.18) through (2.21) we conclude that Bk+1 is a PRULQ matrix of index k+l.4,,.

Given the above definitions, the forward quadrant interiocking factorization algo-
rithm may be stated as follows.

"qN

Aleorithrn 2.1 The Forward Ouadrant Interlockine Factorization

Let B _R . The following steps decompose B to its quadrant interlocking factors with

.-. , B=W Z Q.

Initialize

* B =B,

K m2.

Main Loop

Fork = 1.2.....K-I

1. Column Permutation

-. Find j1 and j2 satisfying Proposition 2.3.

If none exists, then terminate with the conclusion that B is singular.

Otherwise, construct Qk using jI and j2.

2. Compute the vectors uk , k

N by solving the (m-2k) 2x2 linear systems, (2.15).

S3. ,oisu t . '

Nk =1 -uke j - vk "eT.

4. Construct Bk' '

SBk+1 =Nk Bk Qk.

Next k

D- 14
0; .

',

0'"-
! ,¢ 'o

Prooosidon 2.5

%, Let B be a nonsingular matrix of size m. Then Algorithm 2.1 decomposes B to its for-

4
pward quadrant interlocking factors,

B = W Z Q (2.22)

where

h ,,.€-(1) WE [M,-.1 , W = (NK-tN K- 2 N t)-1,

(2) ZE {M,) ,Z = B K,and

(3) Q is a permutation matrix, Q = (Q IQ2 ... QK-1)-l.

Proof

Let B I = B. Applying Proposition 2.4 for k =1,2,...,(m/2)-1, we obtain

B K =NK-1NK-2. NIBI QIQK-2QK-1, (2.23)

where B K is an ULQ matrix, NJ, j = 1,...,K-1 are ELRQ matrices as computed in (2.15)

and Q! are permutation matrices. From (2.23),

B B I = (N K-1 N K-2 """ N I)- ' B K (Q I ... Q K- I K -)-I1 2 .4

Let N(K-I) = (N-I NK-: • • N 1)-1 . By Proposition 2.2 N(K- l) is a LRQ matrix. Also.

le Q(K-1 = Ql .I .. QK-2 QK-1)-I. Since the product of permutation matrices is a per-

mutation matrix, Q(K-) is a permutation matrix. Thus, (2.24) can be written as

BI =B =N(K- I) BK Q(K-1), (2.25)

and (2.22) follows by setting W = N(K-I), Z = B K, and Q =Q(K-1) in (2.25).

Proposition 2.6

4, Algorithm 2.1 without column permutations requires

m 313 + m212 - 4m /3

multiplications on a sequential machine.

Proof

Ignoring column permutations, we trace the operations in the main loop excluding step I

.'.'.0-15

-.. ,.,

The number of multiplications to compute uk and vk

K-i
=[2 + 6(m-2k)]

= m + 3m (m -2)/'2. (2.26)

The number of multiplications to compute B k+1

K-i
= 2.k Z(m -2k) 2

= m. (m -I).(m -2)/3. (2.27)

Summing (2.26) and (2.27) we obtain the specified total number of multiplications.

In Algorithm 2.1 the columns of the PRULQ matrix are permuted to find a 2x2

matrix with a nonzero determinant. There are obvious alternatives that may be used. To

ensure numerical stability for instance, we may find the matrix whose determinant has

.the largest absolute value, or the matrix that has the smallest condition number. Another

0 approach is to permute the rows of the PRULQ matrix to find the required nonsingular

2x2 matrix attempting to minimize fill-in in the nonpivot rows. Both row and/or column

permutations can be selected on numerical stability and/or sparsity grounds.

2.3 The Backward Quadrant Interlocking Factorization Algorithm

Unlike the triangular factors (L,U) of a marix, the quadrant interlocking factors

(W,Z) possess different potential density. That is, the number of potentially nonzero ele-

* ments in W is different than that in Z. In this section we present an algorithm which

obtains the ZW factorization of any nonsingular matrix. We refer to this algorithm as the

Backward QIF algorithm, as opposed to the Forward QIF algorithm of Section 2.2 that

produces the WZ factorization. The development of this algorithm is very similar to the

previous one. The proofs of Propositions 2.7 through 2.10 in this section, use arguments

similar to those used in Propositions 2.2 through 2.5 and hence are omitted.

D-16

//

S. . ,"w.+l I.•_+ ,I, ',,~ " ,' . . .'w_- +_ " -,* w,,- r . . r ,d, Tw ,wW ". ,lw F, .,-", dr'_'+ (, " "

. pDcfnition 2.3
An elementary upper lower quadrant (EULQ) matrix of order m and index k is a matrix

of the form :

Mk = ,, - r k "el- s' "eT - ek .e" - e, "eT (2.28)
where

1 =m -k + 1, kF-1,2,.- -n/2,
eT'rk--O and e-sk--O for ik+l,k+2l. (2.29)

The conditions (2.29) require that components k+1 through m-k of r k and sk be zero,

which are the non-Z-elements of rk and sk in Mk. That is, r k and s k have the form:

rk = (r. r 0 0,rt,....r)T (2.30)

sk = (s sMOO,s k.....)T. (2.31)

Thus, an EULQ matrix of index k and order rn is an ULQ matrix whose only nonidentity

. columns are columns k and I (I=m-k+l). In general, it has the form depicted in Figure

2...

The set of all nonsingular EULQ matrices is closed under inversion, and the inverse

of any nonsingular EULQ matrix of index k is another EULQ matrix of index k.

Prooosition 2.7

Let M(1 =MkM' - t ... M1 where M' is an EULQ matrix of index i , i=1,2,...,k. Then

f ,(k) is a ULQ matrix whose jh and (m-j+l)s columns are those ofMJ , j=l,2,...,n/2.

The proof similar to that of Proposition 2.2.

Definition 2.4

* A partially reduced left-right quadrant (PRLRQ) matrix of index k and order m is a

% square matrix whose non-W-elements are zero in columns k+l through m-k. Note that

B -2 has no special zero structure and B is an LRQ matrix. In general, a PRLRQ matrix

is of the form shown in Figure 2.4.

D- 17

0%

I -

% N%

-~ -% r w j X W -
-I

VI - .WIW
W W

-S
.

-r k -sl k

-s?

Mk=i

67 6

X 01

Figure .. Ilustraio f 2 Pric mauirx of ordcr m and index k.

-J.1

X0NrV ..
k V_ _ _ _ _ _ _ __ _ _ _ _ _ _ NIrp

% %

7A ------

0
Proposition 2.8

Let B4 be a PRLRQ matrix of index k. If Bk is nonsingular then there exist j, and j2

such that Il .5k and 1 <j2 <m and

= Bk, .Btj2 -Bkj 1 .B. , 0 (2.32)

The proof is similar to that of Proposition 2.3.

Now let j, and j2 satisfy Proposition 2.8 and define Pk to be a permuted identity

matrix with column j, in the k"h position and j2 in the 11h. Let Bk be a nonsingular

PRLRQ matrix of index k. Obviously, P =Bk Pk is a nonsingular PRLRQ matrix of

index k , and Sk (fk) is nonsingular.

Using M4 k of (2.28) and the pk defined above, the elimination operation needed to

reduce a PRLRQ matrix of index k a step further is given by the following Proposition.

Prooosition 2.9

Let B k be a nonsingular PRLRQ matrix of index k, let j I and j2 satisfy Proposition 2.8,

let p4 be the permutation matrix that permutes columns k and j, and columns m-k+l

and j:. Let Mk be an EULQ matrix of index k whose rk,sk vectors are determined by

solving the following 2k -2 linear systems

-r," sj S(Bk) = rB k B9 1 i1,...,k-1 and 1+1 ...,m (2.33)

along with the system

rj k S (§l)
• ..-. = Lsk(Bk. (2.34).. ':rr sp

- Then 3 - =Mk Bk pk is a nonsingular PRLRQ matrix of index k-l.

Given the above definitions. We may state the backward QIF algorithm as follows:

Alcoritlhm 2.2 . The Backward Ouadrant Interlocking Factorization

Let B ER ". The following steps decompose B to its QIF with B = Z It' P.

-... D-19

0

A4.. % %

[•Initiali:e

Bm.Z=B,

K =m/2.
Main Loop

Fork = K,K - ,K -2...,l

* -, .1. Column Permutation

Find jI and j2 satisfying Proposition 2.8.

If none exists, then terminate with the conclusion that B is singular.

Otherwise, construct P k using j and j2.

2. Compute the vectors r k , S k

by solving the (2k-i) 2x2 linear systems (2.33) and (2.34).

3. Construct M I

MAlk = IM - rk.eT - s e7 - ek eT - el eT.

* 4. Construct B k-1

'S.,,.
,,. Bk-1 =M , pk.

Next k

Pronosition 2.10

' Let B be a nonsingular matrix of size m. Then Algorithm 2.2 decomposes B to its back-

ward QIF,

B = Z IV P (2.35)

-. ,I where

,., (1) ZE {M }, Z = (M M' •• MK) - I,

S (2) IVE (M,) , W = B 1,and

(3) P is a permutation matrix, P = (P K ... p t)-t.

The proof is similar to that of Proposition 2.5.

* As with the Forward QIF Algorithm, row and/or column permutations can be

adopted to ensure numerical stability and/or sparse factors.

IJ-20

N ~~
Nu " It '

S

• %

* 2.4 Some Characteristics of Quadrant Matrices

In this section we reveal a relationship between the quadrant and triangular

matrces, which has not previously appeared in the open literature (e.g. Evans and Hatzo-

poulos [1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1], Feilmeier [1982-13,

%. Hellier [1982-1], and Shanehchi and Evans [1982-1]). A permutation algorithm that res-

trucrures any quadrant matrix as a block triangular one is presented.

Consider the following matrices

1 0x .XXXX
.

x x 1 0 x"X' X X X I X rX
[xxxx 1l.xx

Z= xxxx , X X (2.36)

• .X X X. X

',-,.X X X X X X10

Where x stands for a potential nonzero element. Note that Z is a lower Hessenberg

matrix with a special zero distibution on the superdiagonal. Also, W is a unit upper tri-

angular matrix with special zero distribution on the superdiagonal.

Now we present an algorithm that relates W of (2.1) and Z of (2.3) to W and Z of

(2.36).

Algorithm 2.3 " The Permuration Aleorithm

Let R, S, and T be square matrices of order m, where R is the input matrix to the algo-

rithm and T is the output matrix. The following algorithm permutes the columns and

rows of R such that:

(a) if R is a LRQ matrix then T is a W-' of (2.36), and

(b) if R is a ULQ matrix then T is a Z of (2.36).

I. Column Permutation

For j=l,2. . .,m2

,,e D-21

"0
V, " -,.. . .. -- ,-- ,.", 9.-,,-V-V i4' . ,sv,' . j'.,, ',- .,, .,Z ... " .£'Zt " "',["- .- "

,,, -. , :,r .,. %. .. , , V; J ir:

,t" ,'S.,m-2j l 4- R~j

S..,j+. 4- R..-j+i

Next j

. 2. Row Permutation

For i =1,2,...,m/2

T.-2i+1.. Si,.

Next i
-,..,..

.' An example o:"the permutation algorithm is given below for m=6.

Example 2.3 (m=6)

1 0 00 0 0 10 w 3.2 W3.5 W3. 1 W3. 6

2 , 1 1 0 0 0 w,. 6 0 1 w4 .2 w4 .5 w4., w 4,6
i,3.1 W3,2 1 0 W3.5 W316 00 1 0 WZ1 WZ 6

,w4.1 W4.2 0 1 W4.5 W4.6 ' = 0 0 0 1 W5. 1 W5. 6

,V5. 0 00 1 W 56 00 0 0 1 0
0 0 00 0 1 00 0 0 0 1

N-
Z 1.1.. Z1. Z. Z.3 Z1.4 Z1.5 Z 1 .6 Z3.3 Z 3 .4 0 0 0 0

0 Z 22.2 24 Z25 0 Z4.3 Z 4 4 0 0 0 0

Z., 0 0 Z3.3 z 3.4 0 0 2- ZZ4 z 2 2 2 5 0 0
0 0 Z.3 z44 0 0 Z Z .3 Z5.4 Z5.2 Z 5.5 0 0

0 ZS,2 Z5.3 Z5,4 Z5 .5 0 Z1.3 Z14 Z1,2 Z 1,5 Z1.1 Z1.6

2 6.1 Z6,2 Z6,3 Z64 Z6,5 Z6.6 Z6.3 Z6,4 Z.6.2 Z6,5 Z6,1 Z6.6

* This clearly shows that the quadrant matrices arm permuted block triangular

matrices with blocks of size 2. That is, the Forward (Backward) Quadrant Interlocking

"- factorization is equivalent to a block Doolittle (Crout) decomposition with blocks of size

On sequential computers, a QIF is not expected to be faster than any triangular

D- 22

0,.
I

decomposition. Since computing the entries of the factors by solving 2x2 systems

4" requires more operations, as shown in Proposition 2.6. Also, finding a nonsingular 2x2

submatrix is more expensive than finding a nonzero element. However, on parallel com-

puters, the QIF is expected to be competitive, since the number of entres that can be

produced concurrently in every stage is doubled, and the number of stages is halved as

compared to a triangular factorization algorithm. Therefore, we may view the column

permutation step in Algorithms 2.1 and 2.2 searching for a nonsingular 2x2 submatrix as

a computation decoupling price we pay for the concurrency gained in steps 2-4.
7%

Determining the relationship between quadrant and triangular matrices is a key

observation that we will use in the following section to design appropriate updating

scheme for the quadrant interlocking factors of the basis matrix in the simplex method.

-N.

2.-'.

i.7/

'.

~.7

-7, D2

-" °

"-p"

S', % 't. . % f -.."••.- .-.-. . . • ,. . . , * . . . ,, - . . - . % " . % . % ". ".,,

7, - = - ~ . - . • . • . - . - • • • . - . • o - - .. • - . ' • • . . " - - - = . . • . - o - . = . * • ," * q. .

'0
% 1I1. UPDATING THE QIF OF THE BASIS

.,.-

At the beginning of a simplex iteration, suppose the basis has the form

B =Z WR, (3.1)

where we assume forms (2.36) for Z and IV, and R is a permutation matrix. When the

entering column A ./ replaces the leaving column B.,p at the end of the simplex iteration,

we have a new basis matrix B which is related to the previous basis matrix B by the for-

mula

§=B E (3.2)

where E is an eta matrix whose pth column is (B-I A ,j), and all other columns are the

identity columns. From (3.1) and (3.2) B can be written as

S9 =Z W R E. (3.3)

An updating scheme is a sequence of operations applied to the right side of (3.3) to

return it to the form given by (3.1), i.e.

B =Z W R, (3.4)

where W" , Z are the new Q.I. factors and F is a permutation matrix. We present an algo-

rithm designed to derive (3.4) given (3.3). It is similar to the Forrest-Tornlin [1972-1]

update for the triangular factors of the basis. Since the spike is in W, our strategy is to

reduce the spiked IV, i.e., WE, to an LRQ matrix using elementary ULQ matrices. The

following algorithm exploits the triangular form of W and the existence of 2x2 identity
0

blocks on the diagonal of W.

In this presentation we use the term brother columns (rows) to indicate columns

(rows) that have the same potential nonzero structure, excluding the diagonal entries in
S

case of LRQ matrices. Thus, for LRQ matrices in the form of (2.36) columns (rows)

D-24

.A%.- J .1.1

".':%

% A-

U.* i,i+1 are brother columns (rows) for i=1,3, ••m-1.

The first step of this scheme is a column permutation followed by a row permuta-

tion. In Figure 3.1 an example is presented to illustrate this step, in which R of (3.3) per-

4mutes columns 2 and 4 of W and x stands for potentially nonzero elements. Thus, W and

WR are as illustrated in Figure 3.1 (a) and (b). From (3.3) we obtain

~=5,:*-,"Z - 1 W R E

where S is illustrated in Figure 3.1 (c) and y stands for the elements of the column vector

(Z- 1 A .,). Note that if (Z- 1 A.,j) has the same zero structure as W.,,, then the new fac-

tors are immediately available. That is, W is S and f is Z. If this is not the case, we

place S in a spiked-It' form S as shown in Figure 3.1 (d), by applying the column permu-

tation R-I to to undo the effect ofR. That is,

* Z-i f R- 1 = WR ER-1

=S. (3.5)

Suppose q < ?n-1. We apply the column permutation to S, placing the spike and the

brother of the leaving column in the positions m and m-1, respectively, and moving all

intervenin, columns forward to produce the matrix Hq, as illustrated in Figure 3.1(e).

We then apply the row permutation /-l to Hq placing the qth row and its brother row in

positions m and m-1, respectively, moving all intervening rows two places up to pro-

'C. duce the matrix H as shown in Figure 3.1 (f), where

- q, if q is odd;
q q - 1, if q is even.

Note that is odd. Of course, if q > m-1, then R = 1. Now (3.5) becomes

RZ-1 R -1 1 lIV RE R-1lR
* = ' R -4

? .:": =if-, S J

D-25

. ,

%
.PJ P . r '1

l % 0 -.-

loxxxxxx lxxoxxxx lyxoxxxx loxyxxxx loxxxxy loxxxxxy
4,olxxxxxx oxxlxxxx oyxlxxxx olxyxxxx olxxxxxy olzxxxxy
'4ooloxxxx ooloxxxx oyloxxxx oolyxxx. ooxxxxly ooloxxoy

0001oxxxx OlooXxxx OYOOxxxx oOoyxxxX ooxxxxoy ooolxxoy
oooolOXX ooooloxx oyooloxx oooyloxx ooloxzoy 000olooY
oooOolXX ooooolXX oyoOolzx oOoyolxX ooolxxoy OO0ooloy
0ooooo10 000ooo10 oyoooolo oooyoolo 0ooolooY ooxxxxly
o0000o01 00ooooo1 ovoooool oovocol r oocolov Ooxxxxov

IV WR S HS H

(a) (b) (C) (d) (e) (M

Figure 3.1. Illustration of the double column and row permutation
(m=8, p=2, q4, =3).

Io x X xxxxxxx Xx xy 1
I0o1x x ... xxxxxxxx ... xx xy

110 xxxxxxxx X x xy
101 xxxxxxxx x x Xy

Iloxxxxxx Xxxy
lolxxxxxx xxxy

Iloxxxx xxoy
10o1X XX X ... xX 0y

1loxx xxoy
lo Ilx x Xxo0y

l01 xxoy

lob xxoy

*X lXIX XIxX ... x Xlby
Ix Xxx lx ... x xloy m

Figure 3.2. bllusuration of the general form of the matrix H'

D-26

0%

~%

=t_ H q% Hq. (3.6)

Consider the marix HI whose general form is depicted in Figure 3.2. Note that the

matrix resulting from the above permutation is H I when I = . Note also that all non-

W-elements in H' are in the last two rows in columns I through m. Our objective now is

to reduce Hq to a LRQ matrix by eliminating these non-W-elements. We consider elim-

inating them four at a time using the 2x2 identities on the diagonal of HI. The necessary

matrices that should reduce HI to H14 2, for 1=iJ+2, • ,m-3, are the following EULQ

transformations.

-0

o o

oI 6
0

o 0,.,< .1

o 0

a... • ". -HI_~~ -H,'-.,M.1-

-,, .,

By repetitive application of Z' to H , for I =,+2, ,m-3, we get Hm- 1 which, in

- general. has a non-W-element in its m-lm entry and a nonconforming element in the

In .m entry-. Therefore, the following rank-one elementary transformation is sufficient to

reduce HI - I to the LRQ matrix W,

a-,

.,

D-27

S%

0- P%,-
: .' •.. . . ," - .-..,. ,- . - " .",. "- .'¢ - '-'- r" '-,¢; " , -- '' ; e ¢ " e "?' " ''d %,'<--.--.'..-.--.'.-?.,.-;.-..'<%.].. %v, -, > ,% <% ? /'/ / <<X

,i, m

K: - 1 / H m -* 1 tZMm-

lH -i/Hm ' rn1

Theoretically, H,., is a nonzero element, since otherwise f is singular. Now, combin-

ing all transformations applied to H', we obtain,

J Z m - 1Zm - 3 .Zq Hq=w,

*i and (3.6) becomes,

{Z- -I Z-3 ... Zq R- Z-1] f (R-1 } = Zm-i Z-- 3 ... Z- HT (3.7)

({f-) B (R- =W,

* which is equivalent to the required updated form (3.4), with

Z=Z gz' . • •.Z-- 3-1 Zm-l-', (3.8)

S= R- Rand

= Z-1 Z " - • H4.

Note that Z in (3.8) is not a ULQ matrix, even though all its factors, except the permuta-

tion matrix R, are ULQ matrices. In practice, f-Z is stored factorized as in the first

braced term in the left hand side of (3.7).

Usine the above, the updating algorithm may be stated as follows:

Algorithm 3.1 " The B.O.I.F. Uodarine Aleorithm

0. Begin with the m x m matrix B = Z W R, and suppose column p of

B is replaced by A

1. Define q such thatR*4 =eq.

-.. 0-28

,O
WA

% %* %

- %U ' \~ %5 %~ %~ % %

..

2. Set

J- A Z- A . , i =q;

WI..i, otherwise.

3. Let

"q+l, ifq is odd;
q-1, ifq is even.

4. Set

ej, I < q;lll '- " 1 ei+2, q <5 i < m -1;
R..j" e4, i = m -;

r.

eq, i = m.

5. H-S

6. Let

q, if q is odd;
q-l,ifq is even.

For !q =1.7-2. rr-3.

7. Set

1, i=l;
', ~j ,-' Hm-..ij/=m-1;

O, otherwise.

1,~ ill
-~ Hm-..ii, im-1;-:~~Z.,+l -,,tl i=m ;

0, otherwise.

Z,j <-- e,, j# and j1 +1.

D-29

N_ .. _N 'I-

'0"'

Q,>~~ ~ A0.'

8.H +-Z' H

Next 1.

9. Set

- A.M

0, otherwise.

10. H -ZI H.

11. Set
..... A.,-

B(Z R (Zq)-l .. Z)-I) H [1 R)

Z*t'R

This updating scheme inherits the major characteristics of the Forrest-Tomlin

update for the triangular factors of the basis. First, no new nonzeros are created in the

right factor Wt, since only deletions of items are required. Therefore, sparsity of W is

presered and fill-in is minimized. Second, the lack of choice of the pivot elements

makes this update less numerically stable than the Bartels-Golub-based updates. Thus,

there is a gain in speed and storage at some sacrifice in numerical stability.

D- 30

%1" VS-
% bP *. .

IN'. PARALLEL IMPLEMENTATION

In this section we describe a parallel implementation of two basic tasks of any sim-

plex based linear programming code, namely, basis reinversion and solution of the linear

systems. A parallel version of the Backward Quadrant Interlocking Factorization Algo-

rithm (BQIF) is presented in Section 4.1. Only the left factor is produced in its product

form while the right factor is produced in its explicit form. This form conforms with the

updating scheme of Section III. In this algorithm, parallelism is gained by reformulating

the BQIF Algorithm in terms of high-level modules such as matrix-vector operations.

These modules represent a high level of granularity in the algorithm in the sense that they

are based on matrix-vector operations, 0(m 2) work, not just vector operations, 0(m)

work. The module concept has already proven to be very successful in achieving both

transportability and high performance of some linear algebra routines across a wide range

of architectures, as reported by Dongarra and Sorensen [1984-2] and Dongarra and

Hewitt [1986-1].

Giver, a basic feasible solution with basis B, each iteration of Dantzig's simplex

algorithm involves solving the systems of equations n B =cB and B y =A.,j. An

eficient parallelization of the simplex algorithm requires efficient parallel algorithms for

solution of these systems. Parallel algorithms for solving these linear systems using the

quadrant factors are presented in Section 4.2. The parallel implementation discussed in

this section is proposed for an MIMD parallel computer that incorporates p identical pro-

cessors sharing a common memory and capable of multitasking, that is, the processors

* are capable of applying all their power to a single job in a timely and coordinated

manner.

' 4.1 The Module-Based BQIF Algorithm

D-31

, %

0.%.

* •Given an m x m matrix B, the algorithm either indicates singularity of B or pro-

duces

Z"'-1Z"- 3 ' ' -Z 1B R =W, (4.1)

where R is a permutation matrix, Zk is a rank-2 matrix of the form,

k k+1-_

x x k
x x k+1 (4.2)

Zk =

X X

. I

This form conforms with the updating schemes of Section III. Its LU version has been

used in several LP codes (Reid [1982-1]) . At every stage a new Z i is produced and two

rows of W are updated. The availability of the updated rows of W at every stage allows

for parallel implementation when searching for a nonsingular 2x2 submatrix. Moreover,

it facilitates finding the 2x2 submatrix of largest determinant rather than finding one with

a nonzero determinant. This reduces the rounding error in the factorization process and

hence improves the numerical accuracy of the results (Shanehchi and Evans [1982-1]).

The major part of the algorithm is formulated in terms of three basic modules:

Module I : Search for a nonsingular 2x2 submatrix

Input : A ER 2-n

Purpose Find column indices j, and j2 such that

DET = A 1j, .A 2j 2 - A 2j, .A 1j 2 O.

Output • j-, :, and DET or a singular indication.

0-32

% 9.
S%

-',,
'pe,

0 g

Module 2 : Matrix - 2 vectors product0

Input : v ERnh'2 ,A 1ERnl'n2'l,Xl .R '2

Purpose Compute y I such that y . y 1 + A1 x
Output :y 1.

Module 3 : 2 vectors - matrix product

Input : y2 ER 212, x 2 ER 211, A 2 FR 11,t2

Purpose: Compute y2 such that y 2 +- y2 + x 2 A 2.

Output : 2.

These modules represent a high level of granularity in the algorithm in the sense

that they are based on matrix-vector operations, 0 (m2) work, not just vector operations,

0 (m) work.

0 Aleorizhm 4.! Reinversion

Let B FR"'. Then the following steps produce a singular indication if B is singular, or

decompose B as in (4.1) if B is nonsingular. The column indices are stored in IPIT (m).

Dc~i- .he "xZ submatrix Sij (A) to be

S"j (A A ij Ai,j+l (4.3)r,,-,ee?' S,.i (A) = Ai+,, j Ai+,,.j+j.(43

-. p

0. Initialize.

r ." ~ W.1: m . Bl:,:

Fori 1,3. ,-3

1. Find a nonsingular 2x2 submatrix.
"p.

.'" ~~~Set n +-m -i + I and A - ,ili

• "", Call Module 1 (A ,n).

If A is sin ular, then terminate with B singular;,

-~ 0-33

0

0

"..-.:.......,...,.. -t:

* otherwise. permute columns

IV:;.i with lt 1:,.j ,and It' 1:~1with 1V1:m.j,.

Record permutation,]I T (i)=j I, IPVT(i+i)=j2 .

2. Obtain a new Z1.

Z 1 4-I, where!I is rn x m, *-j Z' [Sij (W)V'

n- mnii n,. 4- i-i.

For I =,3, -2

Next 1.

Call Module 2 Cy Ir14,n i,n,)

3. Update rows i +2. i +3of Wt.

A <-1 ~ti1.*; - Bi.2i -. i.,.2m.

For 113

Next!1.

Call Module 3 yN c,li4,j,1:)

Next i.

4. Update It.

For i=1,. 'M-

S.,(W) 1-. where I is 2 x

D-34

%p W.

Next i.

The general approach we propose for parallel implementation involves having the

parcnt processor prepare the parameters for a module and make use of the kids (subtask

processors) to work concurrently on that module. In Module 1, at most n(n-1)/2 column

pairs should be checked. The parent sends to each kid the column indices to be checked

for nonsingulaity, and stops all kids whenever one succeeds. As mentioned before, it is

possible to find the nonsingular 2x2 submatrix of largest determinant. To do this, the

parent sends the column indices to the kids, each kid finds the column pair of largest

determinant in his list, sends them to the parent, then the parent selects the best by com-

paring only p-I values.

The concurrency in Modules 2 and 3 is obvious since the, involve matrix-vector

operations. In Module 2 (matrix - 2 vectors product) parallelism is obtained by perform-

ing 2n1 independent inner products, where n 1 is the row dimension of the matrix. Simi-

larly. in Module 3 (2 vectors - matrix product) concurrency is gained by executing 21,

independent inner products. where 1- is number of columns of the matrix. Step 3 needs

on!' Z' - from Step 2. These are the first two rows of yt . Thus, as soon as these

elements become available Step 3 may proceed. This can easily be synchronized. Finally,

in Step 4 the loop divides over i with completely independent tasks. Howevcr, the tasks

require different amounts of computation. Two solutions are possible. Either we adopt

dynamic task queue allocation, or we stadcally allocate i=l,m-3 to one processor,

I=3, m -5 to the second, and so on.

V

4.2 Solving the Linear Systems
In this section we investigate the possible parallelism involved when we solve the

systems of equations Bi = cD and B v =A 4" We assume that the basis matrix B is in

the fomi (41), that is

D-35

•& A

S'"

6>

WW :'+. . ..--- w . . . w- ' r -wr + - "fC1T: 1 .4 ... fl+,' v b +. +: , ',r~+':- t *-.-,+ .. + .,+ - "-. -- - - - - - -- + ',. .,+ /:

Zm-l Zm- •... ZB R =W,

where Zk has the form (4.2), and W is a block unit upper triangular matrix with blocks of

size 2.that is it has the form (2.36). We compute the dual variables (7t) using the follow-

ing steps:

(1) Permutation: "r=cBR.

(2) Solve a block triangular system : tW = ,t.

(3) BTRAN: i =7t1m-lZm- 3 ... Z1.

We compute y, the basis representation of the incoming column A .j, as follows:

(1) FTRAN : =Zm-I Zm -3 •. ZIA.j.

(2) Solve a block triangular system: W 7 =y).

(3) Permutation : y = R 7.

We present parallel implementations of the FTRAN operation, the solution of a

b block triangular system, and the BTRAN operation in Sections 4.2.1, 4.2.2, and 4.2.3,

respectively.

4.2.1 The FTRAN in Parallel

The rules for applying a Z to an arbitrary vector v are as follows:

a) Extract ak +- vk, and Ck+l +- vk+1.

b) Set vk +- 0, and vk+ t <-- 0.

c) Compute 7 = v + ak Zk ..k + ak+1 Zt:m.k+l.

Note that if vk = Vk+1 = 0, then 7 = v and no element of v will change.

- An example is now given for m = 6, k = 3. Suppose we have

0 0 1 11
0 0 2 12

- 3 2 1 3 an 0
J I 2 V= 4 ,and u=

113 1/4 5 15
1/6 1/2 6 16

-ap. -p,

D-36

*4. Id, - e e

% %%

* Then the computation of Z3V is given by

1 0 0 1%v Z3 v0 3 2 +4 1 1
5 1/3 1/4 7
6 1/6 1/2 8.5

i L J L L -

and the computation of Z3U is given by

11 0 0 11
12 0 0 12

ZU 00 2 +0 1 0
0u 0+ 1+02 0
15 1/3 1/4 15
16 1/6 1/2 16

~V~r These rules are implemented in the following module:

Module: FTRAN Operation (A ,v ,n)

Purpose : Apply Zk to an arbia-ary vector v.

Input :n,A CR'n,,v E.Rnl

Output : v,wherev =Vkv.

Steps : 1. Extract a,. +- v 1, and a2 V- v2

2. Set v,+- 0,andV2 +--

3. Compute A . 4 a, A.~

d4. Compute A..2 4-a 2 A ..2.

*5. Compute v *--v + A..,+A. 2 .

Obviously, steps 3 and 4 are independent and can be executed in parallel. In step 5,

the work is partitioned over the rows of v, assigning each kid a block of rows to evaluate.

0-37

I %'

%

0 4.2.2 Solving the Block Triangular System

The solution of an m x m triangular system of equations on a sequential computer

can be obtained by either a forward or backward substitution process which requires

0 (m.) steps, each defined as one multiplication followed by one addition. In order to

solve the system on a parallel computer, methods which require 0 (m3) processors and,

hence, reduce the computation time to 0 (log'm) have been developed (e.g. Chen and

Kuck 11975-1] and Sameh and Brent [1977-1]). Evans and Dunbar [1983-1] introduced

methods that run in 0 (m) time using 0 (m) processors. For practical purposes the pro-

cessor and storage requirement of these methods is unreasonably large.

In this subsection we consider solving the linear system

xW = b, (4.4)

where x, b ER " and W is an upper triangular m x m matrix with 2x2 identity diagonal

blocks. This system may be solved by a forward substitution (FS) process described in

algorithmic form as follows.

Fori = 1,2 .,m

i-I
Xi =b

i - 'W~i, X.

Next i.

It is obvious that a uniprocessor will solve (4.4) sequentially in m (m -2)/2 steps by the

FS process. Let Tp denote the time required to solve (4.4) using p processors, where one

step requires one unit of time. Then

• T =m (m -2),2.

S... With a parallel computer that has p processors, a minimum time requirement for the

solution of (4.4) is

min(Tp)=Tu/p =m (m -2)/(2p). (4.5)

D- 38

%%

U"A.

.i'.< ~~~- " ... '.-.- ,..--'...",........ . .. '.

.' . .. "-.;s',.'.,"-, -' - ."-. ,. '.,'- C S . .,-.",'. -" \ .

The minimum completion time of any algorithm based on FS is equal to the number of

terms in the expression that evaluates xm, that is

Tin = m -2.

From (4.5) it is clear that a minimum of m/2 processors is necessary to solve (4.4) in the

minimum time of m-2 operations. Again this processor requirement is unreasonably

large for our application.

The machine we consider has a limited number of identical processors (p <30).

Therefore, we consider the question: if we are given a fixed number of processors, how

should the parallel operations be scheduled on the processors to minimize the solution

time of (4.4)? We propose to answer this question using a directed graph model that

represents the FS process as follows. The nodes of the graph represent tasks of equal exe-

cution time and the edges represent the precedence relationships between the tasks. Then

we apply a simple scheduling algorithm due to Hu [1961-1], called the level algorithm, to

schcdule the tasks on the processors such that the total execution time is minimized. This

algorithm is known to be optimum for a tree graph, and it gives extremely good results

for general graphs as reported by Ramamoorthy et al [1972-1], Huang and Wing [1979-

1]. and Wing and Huang [1980-1].

We first organize the FS process in terms of operations of equal time and define the

corresponding directed graph. Lem xi = [xi ,xi.1]. Partition x, b, and W into blocks of

:1 ,, /, size 2. Using Sijj as defined in (4.3), the above FS process can then be written as

For i = 1,3 ,m-1

" xx =bi - xJ Sij(W).
j=1.3. -J .- 2

Next i.

Let the following operation, where x i is used to update xj, define a task

, xi +-Xi -x i S1j(W). (4.5)

D-39

op Z

w

- For Hu's algorithm we assume that the execution time of an operation (4.5) is one unit (4

N- multiplications and 4 additions). We can see that the FS process consists of a set of

operations (4.5), on which a set of precedence relations exists. That is, to complete the

evaluation of x i we require x i- 2, for i = 3,5, • • ,m-1. The process can therefore be

represented by a directed graph G (V,E) where the vertex set V is defined as

VE{Vij I vid represents an operation (4.6)),

and the edge set E is defined as

E -{(/ij , vk.) I operation vk.j requires the direct result of operation vi~j).

We shall call G (V ,E) the forward substitution task graph, and refer to it by FSTG.
In Figure 4.1 the FSTG for m=10 is presented. For every vi j in the FSTG, the pair ij is

- indicated. A node is an initial node if it does not have a predecessor and is a terminal

node if it has no successor. It is clear that the FSTG has only one terminal node, at which

i = i -3 and j = m-1. Accordingly, the minimum completion time, denoted by D ,of the

FSTG is equal to the number of nodes on the longest path from an initial node to the ter-

minal node. Thus, D = (m12) - 1, which is the number of times operation (4.6) is exe-

cuted forxm-1.

We next determine the levels of the vertices of the FSTG. Define the level number

(li,) of a node vij as follows: 1) the level of the terminal node is D, 2) the level of a

node that has one or more successors is equal to the minimum of the levels of its succes-

sors minus one. Applying this definition to the FSTG, we can conclude that

lj (i + 1 /2. (4.6)

The level number is simply the latest time by which node vri must be processed in order

to complete the task graph in the minimum time D. The level numbers of the nodes of

Figure 4.1 are given as shown.

Once the level numbers of the operations are determined, we apply Hu's scheduling

.f-. 5'

D-40

! .%

-. $N

%

level

.D44

.4..%

6 algorithm to assign operations to processor;. Define a ready task to be one whose

nimmediate predecessors have all been processed. The scheduling algorithm is as follows.

Algorithm 4.2: Hu's Scheduling Algorithm

1. Among all the ready tasks, schedule the one with smallest level number.

2. If there is a tie. schedule the one with the largest number of immediate succes-

sors.

Applying this Algorithm to the FS process represented by FSTG. the computations

are organized as follows.

Algorithm 4.3 : Forward Substitution

Setx1 +-b 1 .

For k 3,5. m -I

* xk -bk X' S k(W).

Next k.

Fori = 3, ,m-3

For j = i-2.i+4, m -I

,X j (-X.i --X i Si'j (W~)

Next j.

• "Next i.

All operations in loop k are independent and have the same level number. Their

A level number (I1k = 1) is the smallest among all other operations in the Algorithm, and

* hence the, are executed first. Similarly, all operations in loop j are independent and have

the same level number as given by (4.6). The ordering of index i predicates the execution

of the operations by increasing level number. This satisfies the first criterion in Hu's

Algorithm. The second criterion imposes the ordering of the index j. That is, the number

%' of immediate successors of vij is always greater than or equal to that of Vi~j+2 for

D-42

00

% ,%N

e ,,11

• j~~~~ +: i.+.4,"•,-.

A parallel implementation of Algorithm 4.3 involves having the parent processor

partition the work in loop k among the kids. Then for every i, the computational tasks of

loop j are again divided among the kids.

Lower bounds on the completion time of a task graph given a fixed number of pro-

cessors were derived by Ramamoorthy et al. [1972-1]. Let nk be the number of nodes in

level k. Let: (p) be the minimum completion time to process a task graph with p pro-

cessors. Then

t" (p) >i max +D - , (4.7)

where D is the minimum completion time of the task graph and [x] denotes the smallest

intecer x. The first term in the expression denotes the minimum number of time units

required to complete all the operations of the first i levels using p processors. The term
, D -i is equal to the number of remaining levels yet to be processed. This bound may be

useful in demonstrating optimality of the scheduling using Hu's Algorithm.

4.2.3 Parallel Implementation of the BTRAN Operation

In this section, we consider the parallel implementation of the following operation

7Z -=m- ... z i

where , is an arbitrarv vector of m elements and each Zk is an m x m rank-2 matrix that

has the form (4.3).

The rule for computing f = u Zk is as follows:

% a) Set - u, for i k and i k.+l.

b) Se t 4- u.., Z:,.k.

c) Setik+1 4- Uk:m Zk:mk+1"

D-43 I
II
•

,- .- . .- .- .- .-. - , .-- ...- -j", .-.. .. ",- . -\ ' . ".. "%.,.',....'7. " " < , ,? "-" ,.J

V WN~' ~' V ' O 'MT "r ' U % V J,~ -.- K ' l Xp rTIJ ~x~ r -. w ~ ,$ I4i -U - .* ~'m.n -X Ful " VEN TIC MX-A 1wWWWV"WU

0 For example. let m = 6. k = 3 and suppose we have

001
0 01
2 12Z._,- 1 ,and u-[1 1 1111].

3 4
•A "* 62

L J

Thenii=uZ -[1 1 12 9 1 1].

Note that ff differs from u in only the kh and the k+17 elements. Note also that the

elements u,, i=1,... ,k-l, are not required in computing i7. Using these observations,

the BTRAN process may be represented by the following.

, Fork r-1, • •,1

Ilk +-Uk:mn Z~kk

* li-1 *--llk:m Zkr:m,k-1 .

Next k.

We now apply the methodology stated at the end of the previous subsection. Let the fol-

lowing operations define a task

uk <- U, skk(Zk). (4.8)

uJ u" u + U i Si~j(Zi). (4.9)

We assume that the execution time of both operations is one unit. The task graph

G (V,E) of the BTRAN process is defined by the vertex set V, where

J J an operation (4.8), if i =j;
1V f ij vi~j represents 1

an operation (4.9), otherwise

, and the edge set E, where

E E {(, ,' v.,) I operation Vk,1 requires the direct result of operation vij}.

D-44

V A

% %

.o.- Z- ,

4-.w• 'W >W t.TWJWJ W'JrW'.- V."' V. ' .P r ;.I .flp-,w _Jq VW VV r L-WRW I-I. - - , --

SG (1',E) has only one terminal node at which i =3 and] = 1. Following the same argu-

ments used earlier with FSTG, we conclude that

D =m /2,
and

.- 1, ifi =j;

M - i + 3)/2, otherwise.

Applying Hu's Algorithm to the BTRAN task graph yields the following ordering

of computations.

A!Qorithm 4.4 : BTRAN Operation

Fork =m-1. -3," ,1
Su k

< 1 " k
',(ZS).

Next k.IL

For i =m-lm- 3

Forj =i-2,i-4, .1

u - U) + u S, (Z)

Next ;.

Next i.
-. I

The ordering of the index i is imposed by the first criterion of Hu's Algorithm. The

ordering of the indices k and j is the result of applying the second criterion. Parallelism

% is gained by having the kid processors work first on loop k in parallel, and then for every

i. having the kid processors work on loop j in parallel.

I

I""

D-45 I
IL

° o -wS

'I..' V. SUJMMARY

Evans and Haczopoulos [1979-I] developed a new matrix factorization, known as

the Quadrant Interlocking Factorization (QIF), for solving linear systems on parallel

computers. In this paper we have presented the algorithms required to use this new fac-

torization in Dantzig's simplex algorithm for linear programming. This work may be

viewed as a parallelization of the simplex method using a quadrant interlocking factori-

zation for the basis inverse.

In Section I, the factorization algorithms are developed, and the relationship of

.,. quadrant and triangular mao-ices is presented. In Section Il, a new algorithm is presented

for updating the factorization during a basis exchange step. In Section IV, we present a

parallel implementation of the factorization algorithm, and develop the algorithms

* required to solve the linear systems of the simplex method on a parallel computer using

the QIF of the basis. For each algorithm the concurrency among the steps is revealed, the

computations are organized and a parallel implementation is proposed. The algorithms

are desicned for an MIMID parallel computer that incorporates p identical processors

sh armnc a common memory and capable of applying all their power to a single applica-

tion in a timely and coordinated manner.

D- 46

.1

V %

0SA

I"

REFERENCES

Bartels. R. H.. 1971-1, "A Stabilization of the Simplex Method," Numer. Math.. 16, pp.
414-434.

Chen. S. C., and D. Kuck, 1975-1, "Time and Parallel Processor Bounds for Linear
% Recurrence Systems," IEEE Trans. Comput.. C-24, pp. 101-117.

Chen, S. S.. J. J. Dongarra and C. C. Hsiung, 1984-1, "Multiprocessing Linear Algebra
Algorithms on the CRAY X-MP-2: Experiences with Small Granularity,"
J. Parallel and Distributed Comoutin, 1, pp. 22-31.

Dongarra. J. J., A. H. Sameh and D. C. Sorensen, 1984-I, "Implementation of Some
Concurrent Algorithms for Matrix Factorization," Argonne Nat. Lab., Argonne, IL, Rep.
ANLAICS-ThM-25.

and D. C. Sorensen, 1984-2, "A Parallel Linear Algebra Library for the Denelcor
HEP." Argonne Nat. Lab., Argonne, IL, Rep. ANL/MCS-TM-33.

and T. Hewitt. 1986-1, "Implementing Dense Linear Algebra Algorithms Using
Multitasking on the CRAY X-MP-4," SIAM J. Sci. Stat. Comput.. 7, pp. 347-350.

Evans. D. J.. and M. Hatzopoulos, 1979-1, "A Parallel Linear System Solver,"
Intern. J. Comnu!er Math.. 7, pp. 227-238.

-, and A. Hadjidimos, 1980-1, "A Modification of the Quadrant Interlocking Fac-
tonsation Parallel Method," Intern. J. Computer Math.. 8, pp. 149-166.

". 1982-1. "Parallel Numerical Algorithms for Linear Systems," in
Paral!lel Processing Systems. (D. J. Evans, ed.), Cambridge Univ. Press, Cambridge, pp.
357-384.

___,_ and R. C. Dunbar. 1983-1, "The Parallel Solution of Triangular Systems of Equa-
tions." IEEE Trans. Comput.. C-23, pp. 201-204.

Feilmeier. M.. 1982-1, "Parallel Numerical Algorithms," in
Parallel Processing Systems, (D. J. Evans, ed.), Cambridge University Press, Cambridge,
pp. 285-338. "

Forrest, J. J. H., and J. A. Tomlin, 1972-1, "Updated Triangular Factors of the Basis to
Maintain Sparsity in the Product Form Simplex Method," Mathematical Programming.
2, pp. 263-278.

Hellier. R. L., 1982-1, "DAP Implementation of the WZ Algorithm,"
Comp. Phvs. Comm.. 26, pp. 321-323.

Huang, J. W., and 0. Wing, 1979-1, "Optimal Parallel Triangulation of a Sparse
Matrix." IEEE Trans. Circuits Svst. CAS-26, pp. 726-732.

Hu. T. C.. 1961-1. "Parallel Sequencing and Assembly Line Problems,"
Operations Research. 9. pp.841-848. r

0-47

Y16

...... -

Markowitz. H M.. 1957-1 "The Ejimination Form of the Inverse and its Application to
Linear Programming," Management Science. 3, pp. 255-269.

Ramamoorthv. C. V., K. M. Chandv and M. J. Gonzalez, 1972-1, "Optimal Scheduling
Strategmes in a Multiprocessor System," IEEE Trans. Cornout.. C-21, pp. 137-146.

Reid, J. K.. 198:-1, "A Sparsity Exploiting Variant of the Bartels-Golub Decomposition
for Linear Programming Bases," Math. Programming, 24, pp. 55-69.
Sameh, A. H., and R. P. Brent, 1977-1, "Solving Triangular Systems on a Parallel Com-

puter." SIAM J. Numer. Anal.. 14, pp. 1101-1113.

I Saunders. M. A.. 1976-1. "A Fast. Stable Impiementation of the Simplex Method Using
Bartels-Golub Updating," in Sparse Matix Computations, (J. R. Bunch and D. J. Rose,
eds.), Academic Press, New York, New York, pp. 213-226.

Shanehchi. J. and D. J. Evans, 1982-1, "Further Analysis of the Quadrant Tnterlocking
Factorisation (Q.I.F.) Method." Intern. J. Computer Math., 11, pp. 49-72.

Wing. 0.. and J. W. Huang, 1980-1, "A Computation Model for Parallel Solutior. of
Linear Equations," IEEE Trans. Comout., C-29, pp. 632-638.

Zaki. H. A., 1986-1, "A Parallelization of the Simplex Method Using the Quadrant Inter-
locking Factorization," unpublished dissertation, Department of Operations Research
and Enzineering Management, Southern Methodist University, Dallas, Texas.

D-4

'-.ti
r..:e n.-

-.S

0%,

e ,. ,,"r.,.". "..''.e. '.''_.Ze".'.'Z'Z-.''.-.'-. -. '. ----.---------------.----.---.----.-----.-.----. '.-.----.-'......'.-."- •. "" .-

. APPENDIX E

MINIMAL SPANNING TREES:

A COMPUTATIONAL INVESTIGATION OF PARALLEL ALGORITHIMS

' - R. S. Barr

, -R. V. Helga son

. . J. L. K ennington

v.

Department of Operations Research
- School of Engineering and Applied Science

~Southern M ethodist University

• Dallas, Texas 75275

* '

% %

PREFACE

The objective of this investigation is to computationally test parallel

algorithms for finding minimal spanning trees. Computational tests were run on

a single processor using Prim's, Kruskal's and Boruvka's algorithms. Our

implementation of Prim's algorithm is superior for high density graphs, while

our implementation of Boruvka's algorithm is best for sparse graphs. Implemen-

tations of parallel versions of both Prim's and Boruvka's algorithms were

tested on a twenty-cpu Balance 21000. For the environment in which a minimum

spanning tree problem is a subproblem within another algorithm, the parallel

implementation of Boruvka's algorithm produced speedups of three and five on

five and ten processors, respectively; while the parallel implementation of

Prim's algorithm produced speedups of three and five on five and ten

processors, respectively. The one-time overhead for process creation negates

most, if not all of the benefits for solving a single minimum spanning tree

subproblem.

ACKNOWLEDGEMENT

This research was supported in part by the Department of Defense under

Contract Number MDA 903-86-C-0182, the Air Force Office of Scientific Research

.'- under Contract Numbers AFOSR 83-0278 and AFOSR 87-0199, the Office of Naval

Research under Contract Number N00014-87-K-0223, and Rome Air Development

Center under Contract Number SCEE PDP/86-75. The authors wish to express

their appreciation to Professor Hossam Zaki of the University of Illinois and

Professor Iqbal Ali of the University of Massachusetts at Amherst for their

* helpful comments.

E- 2

0

SIN..

.~. .aa- %

I. INTRODUCTION

The United States along with other developed countries is entering a new

generation of computing that will rrquire software engineers to redesign and

reevaluate standard algorithms for the new parallel processing hardware that is

being installed throughout the developed world. It may well be that algorithms

which proved to be superior for single processor machines may prove to be

inferior in some of the new parallel processing environments. One of the more

popular new parallel machines is Sequent Computer Systems' Balance 21000. The

objective of this investigation is to computationally test parallel algorithms

for finding minimal spanning trees on a twenty-cpu Balance 21000.

* An undirected graph G - [V,E] ccnsists of a vertex set V and an ede set

E. Without loss of generality we assume that the edges are distinct. If G' -

[V',E'] is a subgraph of G with V' - V, then G' is called a spannin2 suberaDh

for G. If, in addition, G' is a tree, then G' is called a spanning tree for G.

A graph whose components are trees is called a forest, and a spanning subgraph

for G, which is also a forest, is called a soannine forest for G. We will call

([Vi,Ti]: Vi - {ui), Ti - , ui c V) the trivial spanning forest for G and the

[Vi,Ti] trivial trees. Associated with each edge (u,v) is a real-valued cost
-..

V c(u,v). The minimum spannine tree problem may be stated as follows: Given a

connected undirected graph each of whose edges has a real-valued cost, find a

spanning tree of the graph whose total edge cost is minimum.

Applications include the design of a distribution network in which the

nodes represent cities or towns and the edges represent electrical power lines,

water lines, natural gas lines, communication links, etc. The objective is to

E-3

%v

% . v %

,.'-'.~~ ~~ -% -' '-.L ' .. " -"'".- .""" ' ' ' ' .' '.. /.. "-"> >"r"'""- . -:'--' .. 2S=-X w t .e. ;-.]
.", ". ." ". .- ./ , . ." " ' ' ' , ' .'.z .-' . .' • " • • " . -' . .h - - -- - A./ -.-... ' ; ., -A ' J 'm .' ' .W , ' ,, .,!' " ' '4 .,

Vdesign a network which uses the least length of cable or pipe. The minimum

spanning tree problem is also used as a subproblem for algorithms for the

tr.velling salesman problem (see Held and Karp [6, 7) and Ali and Kennington

[3]). Some vehicle routing algorithms require the solution of a travelling

, salesman problem on a subset of nodes. Hence, a wide variety of applications

require the solution of minimal spanning trees. Some applications require a

single solution and some use the model as a subproblem within another

'4. algorithm.

E-

% %%2

*44."

'.

. . E-

.4,

".l*,

II. THREE CLASSICAL ALGORITHMS

The algorithms in current use may be traced to ideas developed by Prim,

Kruskal, and Boruvka. These three classical algorithms all begin with the

trivial spanning forest Go - {[Vi,Ti], i - O,...,IVI-l). A sequence of

spanning forests is obtained by merging spanning forest components. Given

spanning forest Gk, a nonforest edge (u,v) is selected end the components

[ViTi] and [Vj,Tj] with u c Vi and v E Vj are removed from Gk and replaced by

[V£,TJ], where I= k + IvI, Vz = Vi Vj, and To - TiIJTjL)((uv)), yielding

spanning forest Gk+l. After m - lV[-1 edges have been selected, Gm -

{[V2mT2m]) - ([V,T]) is a minimal spanning tree for G.

Let [Vi,Ti] and [V ,Tj] denote two disjoint subtrees of G. Define dij,

the shortest distance between the trees, by dij - min (c(u,v): (u,v) c E, u c

Vi, V E Vj). The three classical algorithms may be viewed as different

applications of the following result:

- Proposition 1.

Let VO, V 1 Vn denote vertex sets of disjoint subtrees of a minimum

spanning tree for G. Let c(u,v) - djn - min djn with (u,v) E Vj x Vn . Then

(uv) is an edge in a minimal spanning tree for G.

A proof of Proposition 1 may be found in Christofides (4, pp. 135-136].

In Prim's algorithm, the nonforest edge (u,v) for Gk is always selected so

that (u,v) c V1 x Vj*, where j* is the largest index j such that [VjTj] c Gk.

* Thus a single component continues to grow as trivial trees disappear. An ex-

cellent description of Prim's algorithm is given in Papadimitriou and Steiglitz

[15, p. 273], along with its (serial) computational complexity of O(1V1 2). It

• is believed that this algorithm is best suited for dense graphs.

E-5

S%

..

.1",

,4,...

%.. ,
,,,', "* 'i " ,':e" , ": :''' ~~~~~~ -----... -. . . "" " " -|" --"-

In Boruvka's algorithm, the nonforest edge (u,v) for Gk is always selected

so that (u,v) C Vi* x V , where i* is the smallest index i such that [Vi,T,] C

Gk. Thus a variety of different-sized components may be produced as the

algorithm proceeds. All trivial trees will be removed first in the early

stages of this algorithm. A description of Boruvka's algorithm is given in

Papadimitriou and Steiglitz [15, p. 277], along with its (serial) computa-

tional complexity of O(Et log jlv). This algorithm appears to be best suited

for sparse graphs.

Kruskal's method may be viewed as an application of the greedy algorithm.

The minimum spanning tree is constructed by examining the edges in order of

increasing cost. If an edge forms a cycle within a component of Gk, it is

discarded. Otherwise it is selected ard yields Gk+ I. Here also different-

sized components may be produced. A description of Kruskal's algorithm is

given in Sedgewick [18, pp. 412-413], along with its (serial) computational

complexity of O(IEI log JEJ).

.7

5L

I

.,

I

E-6q

'

Il

",-.".'.......''',... ' '.- - ---,'.'-.---.--- -.,.-, . ,..-...';-..,, ..-. '-.-..,....*:..> .:::,,'> ":, --, '

4.

III. COMPUTATIONAL RESULTS WITH SEQUENTIAL ALGORITHMS

Computer codes for Boruvka's algorithm, Kruskal's algorithm, and three

versions of Prim's algorithm were developed. SPARSE PRIM maintains the edge

data in both forward and backward star format, while DENSE PRIM maintains the

edge data in an I VI x IVI matrix. HEAP PRIM maintains the edge data in both

forward and backward star format and makes use of a d-heap as described in

Tarjan [19, p. 77). IRUSKAL makes use of a partial quick sort as described in

[1, 8] to produce the least cost remaining edge. BORUVKA is a straightforward

implementation of the algorithm presented in [15].

Random problems were generated on both n x n grid graphs and on completely

random graphs. All costs were uniformly distributed on the interval

(0, maxcost]. All codes are written in FORTRAN for the Balance 21000.

The computational results for grid graphs are presented in Table 1. These

graphs are very sparse and BORUVKA was the clear winner. The computational

results for random graphs may be found in Tables 2 and 3. SPARSE PRIM was the

. winner for problems whose density was at least 40% with HEAP PRIM running a

*close second. For problems with densities of 20% or less, HEAP PRIM was the

winner with KRUSKAL running a close second. KRUSKAL appeared to be the most
-'.

robust implementation, working fairly well on all problems tested.

E- 7 % %o

%-% %

%0 l

Table 1. Comparison of Sequential Algorithms on Grid Graphs

(cost range is 0 - 10,000)

Grid Size Edges Greph DENSE SPARSE HEAP IRUSKAL BORUVEA
G r n Density PRIM PRIM PRIM

15 x 15 420 1.7% 1.70 .36 .27 .19 .12

18 z 18 612 1.2% 3.54 .74 .42 .30 .17

20 x 20 760 1.0% 5.43 1.10 .54 .39 .21

24 x 24 1,104 .7% 11.32 2.19 .82 .63 .30

28 x 28 1,512 .5% 21.01 4.09 1.13 .86 .46

30 x 30 1,740 .4% 27.82 5.41 1.37 1.15 .55

I Total Time (sees.) I 70.82 I 13.89 I 4.55 I 3.52 I 1.81
IRank I 5 ' ! 31 2 I 1 I

0
'E-8

-~ %/

hP

'I.,,.

0 .

5. 5

Table 2. Comparison of Sequential Algorithms on High Density Random Graphs.

(cost range is 0 - 10,000)

*. i ~ oo
DENSE SPARSE HEAP I KRUSKAL BORUVKA

Density PRIM PRIM PRIM

200 19,900 100% 1.39 1.14 1.44 1.52 3.01

A 200 15,920 80% 1.39 .97 1.22 1.52 1.96

200 11,940 60% 1.39 .79 .99 .96 1.47

200 7,960 40% 1.39 .61 .76 .89 1.02

400 79,800 100% 5.67 4.55 5.42 4.45 12.03

400 63,840 80% 5.69 3.85 4.53 3.58 10.28

400 47,880 60% 5.70 3.13 3.62 2.82 7.26
0

400 31,920 40% 5.71 2.49 2.68 1.97 4.85

600 179,700 1001 13.28 10.39 11.98 12.38 29.85

600 143,760 801 13.66 8.79 9.99 14.99 23.72

600 107,820 60% 13.16 7.15 7.99 10.63 17.79

600 71,880 40% 13.02 5.55 5.67 6.05 11.80

ITotal Time (secs.) 1 81.45 149.41 156.29 61.76 125.04
I ank i 41 1 21 3 5SI

:.

A0

2%X E-9

N

jr w

.J

m r.%,'.'..r- - -. '-.--'- -............-.......-..-.........................-..........-.....-..-.-.......-...... % '--.,-'--.

,
.

'

'W% .v - 7r. Ir l W. - . v vvvvV -

V71

Table 3. Comparison of Sequential Algorithms on Low Density Random Graphs.

(cost range is 0 - 10,000)

Vertices Edges Graph DENRI ISPR i P I 1RUSKAL BORUVKA

200 3,980 20% 1.40 .44 .49 .50 .52

200 1,990 10% 1.40 .36 39 .40 .35

200 995 5% 1.39 .32 .32 .35 .17

400 15,960 20% 5.66 1.75 1.62 1.47 2.46

400 7,980 10% 5.71 1.40 1.12 1.53 1.30

400 3,990 5% 5.72 1.21 .86 1.20 .72

* 600 35,940 20% 13.04 3.94 3.39 3.99 6.02

600 17,970 10%, 13.04 3.05 2.14 2.89 2.86

-' -.- 600 8,985 57 13.07 2.73 1.50 2.12 1.52

ITotal Time (secs.) 60.43 I 15.20 1 11.83 I 14.45 I 15.92

IRanck 5 1 3 11 21 4 I

'.

.1.'.,

E-10

1 -. . . J

" --

IV. PARALLEL ALGORITHMS

Paral lel versions of the three classical algorithms have appeared in the

litei-.ure (see [2, 5, 9, 10, 11, ld, 16, 17]), however; no computation

experience has been reported. The overhead required for coordinating the work

of multiple processors can only be determined by actual implementation on a

parallel processing machine.

A parallel version of Boruvka's algorithm was developed for grid graphs

and a parallel version of Prim's algorithm was developed for high density

random graphs. Both algorithms use modules (subroutines) which may be executed

in parallel. Suppose there are p processors available for use. The parallel

operations are initiated by the main program using statements of the form:

for m - 1 to p, fork module z(m).

The main irogram and p-I clones will each execute module z in parallel.

Processing does not continue in the main program until all processors complete

module z. The argument "m" allows each of the p processors to process

different parts of the data or follow a different path. We assume that all

data in the main program is shared with module z. If module z has local non-

shared variables, then these will be explicitly stated in the description of

the module. Multiple processors which update the same variable, set, or list

use locks to insure that only one processor has access to a given item.

.4 .4,

E-11

% . N. .

Ol0
-. d -d N . KS % X

% V N.N

4.1 Parallel Boruvka For Grids

Using the fork and lock constructs we present a parallelization of Boruvka's

algorithm for grid graphs. The most expensive component of Boruvka's

sequential algorithm may be described by the following procedure:

for all (u,v) E E

let i and j denote the subtrees containing u and v, respectively;

if i 0 j then
•if cost(u,v) < min(i) then min(i) <- cost(u,v)

if cost(u,v) < min(J) then min(j) - cost(u,v)

end if

end for

That is, all the edge costs must be examined and certain subtree data are

updated. Our parallelization of this scan relies upon a partitioning of the

grid into p components (one for each processor). A three processor parti-

tioning of a 7 x 7 grid network is illustrated in Figure 1.

The above edge scan is performed in two stages. The first stage performs

a parallel scan over edges both of whose vertices lie within the same partition.

The second stage performs a parallel scan over edges across cut sets. If each

partition consists of at least two rows of the grid, then all subtree data up-

dating can be performed independently without the requirement of a lock.

The second part of Boruvka's algorithm is to merge two subtrees by

* appending a new edge. The merger of subtrees, both of which lie in the same

partition can also be executed in parallel.

Using this data partitioning approach, the parallel algorithm may be

stated as follows:

E-12

W%

% % %

0%

jatiio I -r~ a '

cu I

i-f-i i-i i

Cut 1prtition

cut 2

______ _____ _____ ____________partition
3, III I I I j)

FiLgure . A Three Processor Partitioning of a 7 x 7 Grid Graph.

9 E 1

I

"E- 13 ,S

* PARALLEL BORUVKA FOR GRIDS

Input: 1. An n x n grid graph G - IV,El with V - {vl,.... vq.

2. For each edge (u,v) E E a cost c(u,v).

3. The number of processors, p, available for use.

Output: A minimal spanning tree [V,T].

.- 'p Assumption: G is connected and has no parallel edges.

begin

T <- 0, r- rn/pl. I <- n -rp;

If r < 2, terminate.

for i - 1 to q, Si <- (vi);

C 4- (S1 ..., Sq)

W, 4- (v: v C V and v is in grid rows 1 through v + 1);

for m - 2 to p,

W 4- (v: v c V and v is in grid rows (m-l)r + P + 1 through mr + 2);

for m - I to p, Xlm 4- ((u,v): (u,v) c E, u c Wi, and v c Wm ;

lm m#

- for m - 1 to p - 1,

X2m 4- [(u,v): (u,v) c E with u E Win, V E Wm+l or u E W,+ ,, v c Win;

for i - 1 to q, cpu(i) 4- m, where vi c Win;
(comment: S. Sq are assigned to the p processes)

create p-l clones

(comment: create p-i additional processes and place them in the wait
state)

C, while ICI 0 1

for m - 1 to p, fork module edeescan(l,m);

(comment: forks are executed in parallel and processing does not continue
in the main program until all processes complete edgescan)

for m - 1 to p-l, fork module edgescan(2,m);

L 4- 0;

E- 14
-',.

, , • "

* ..

w a

for m - I to p, fork module merge(m);

for all (u,v) c L do

let Si and Sj be the sets containing u and v, respectively;

if ISil < ISj then

S.'
-4.-<'-.: si 4-s1L.Jsj, C 4-cs;

else

Sj 4- Si .)s j, C 4- C\Si;

end if

T 4- T U(u,v);

end for

end while

end.kill the clones

-end

module eduescan(k,m)

begin

(comment: k = 1 implies the scan is within partition m,
k = 2 implies the scan is across the cut set separating rsrtitions

m and m + 1)

for all (u,v) E Xkm

let Si' S be the sets containing u and v, respectively;

if i # j then

if c(u,v) < min(i) then min(i) 4- c(u,v), shortest(i) - (u,v);

if c(u,v) < min(j) then min(j) 4- c(u,v), shortest(j) 4- (u,v);

* end if

(comment: shortest(i) is the least cost edge incident on Si)

end for

0 end

'.4-

. E-15

000

~~rrwr..rwV'M#1.VV -. L %x. *sFV-w-~ .s.IY IM UN Vr LN V'
P 'tW Z' ' ryiV'Wl' ' T

module meree(m)

begin

for all vk E Wm do

(u,v) 4- shortest(k)

let Si, Sj be the sets containing u and v, respectively;

if i 0 j then

if cpu(i) - cpu(j) then

,if II1 < IsjI then

Si 4- Si L) Sj, C 4- c\sj;

else

Sj 4- Si U Sj, C 4- C\Si;

*end if

lock T

T - T LU{(u,v))
.d.

unlock T

else

lock L

L - L tU((u,v))

unlock L

end if

end if

end for

6 end

E-16

I

6,

• ", "~~~~~~~4. . -, . , , ,- . . ' "

* 4.2 Parallel Prim

The most expensive part of Prim's sequential algorithm is to find a

minimum entry in an IVI length array. This search can be allocated over p

processors, each of which finds a candidate minimum. The best of the p candidates

becomes the global minimum. Under the assumption that parallel edges do not

exist, there is also a scan of edges over the forward and backward star of a

given node which can be executed in parallel. Data partitioning via the use of

independent cut sets could also be used for random graphs in a manner similar

to that described in Section 4.1. That has not been done in this

investigation.

The parallelization of Prim's algorithm may be stated as follows:

PARALLEL PRIM

input: 1. A graph G = [V,E) with V - (vl,..., vn).

2. For each edge (u,v) c E, a cost c(u,v).

3. The number of processors, p, available for use.

Output: A minimal spanning tree, [V,T].

Assumption: G is connected and has no parallel edges.

begin

U 4- {vi I, w 4- vi , T 4- 0

for i a 1 to n, d(i) 4- ;

create p-l clones

(comment: create p-l additional processes and place them in a wait
* state)

F 4- ((w,v) C E);

partition F into mutually exclusive sets F1 ,...,F,, S < p;

* for m a 1 to s, fork module forwardscan(m);

B 4- ((u,w) c E);

E-17

'.

N:

06

partition B into mutually exclusive sets BI ... ,Bt, t < p;

.. for m - 1 to t, fork module backwardscan(m);

while U 0 V do

globalmin 4- -;

for m - 1 to p, fork module nodescan(m);

4, (comment: forks are executed in parallel and processing does not
continue in the main program until all processes complete
nodescan)

T 4- T U{e(ibest)), U 4- U L.{w};

F 4- ((w,v) c E);

partition F into mutually exclusive sets F1,..., Fs, s<P;

for m a 1 to s, fork module forwardscan(m);

14 B 4- ((u,w) E E);

partition B into mutually exclusive sets B1 ,..., Bt, t < p;

for m - 1 to t, fork module backwardscan(m);

end while

kill the clones

end

..

",." E-18

0
4,~~~~~~~~~~~~~ ~.~' ~ 44 4 ~*'' 4 ,:. . .'4 . I .V

4,4,~4%~%*

*% %

module nodescan(m)

local data: min, x

begin

" ramin <-

for i- m to n step p do

, if d(i) < min then min <- d(i), x <- i;

end for

lock globalmin

if min < globalmin then globalmin <- min, ibest <- x, w <- Vx;

unlock globalmin

end

module fowardscan,(m)

*begin

for all (u,v) c Fm do;

if c(u,v) < d(v) then d(v) <- c(u,v), e(v) <- (u,v);

end for

end

module backwardscan(m)

begin

for all (u,v) c Bm dc;

if c(u,v) < d(u) then d(u) <- c(u,v), e(u) 4- (uv);

end for

end

0

E-19

. 4.

* V. COMPUTATIONAL RESULTS WITH PARALLEL ALGORITHMS

Both algorithms of Section IV were coded in FORTRAN for the Balance 21000

located in the Center for Applied Parallel Processing at Southern Methodist

University. The Balance 21000 is configured with twenty NS32032 cpu's, 32

Mbytes of shared memory, and 161 user-accessible hardware locks. Each cpu has

8 Ibytes of local RAM and 8 Kbytes of cache. The Balance 21000 runs the DYNIX

* operating system, a version of UNIX 4.2bad. DYNIX includes routines to create,

synchronize, and terminate parallel processes from C, Pascal, and FORTRAN. More

details about the Balance 21000 may be found in [13].

Table 4 gives the computational results with Boruvka's algorithm. The

times are wall clock times and are the average for three runs. The first row

-in each table contains the time for the sequential version of BORUVKA and all

other rows contain times for the parallel version. The sequential version is

250 lines of code, while the parallel version required over 400 lines. The

speedup for a row is calculated by dividing the best sequenLial time by the

time in that row.

Initially, the parallel code creates the additional processes to be used

and requires each of them to build data tables which give the location in

virtual memory of all shared data. Once this is done, the processes can be

used repeatedly with little system overhead. However, this initial creation

,. and the subsequent killing of those processes at termination can be very

expensive for this type of problem. The first column of times includes the

, creation and process termination time while the second does not. Hence, if a

350 x 350 minimal spanning tree was to be obtained one time, then the best

speedup is 2.6 using seven cpu's. If however, this is a subprogram of a larger

* system, then a 350 x 350 problem can yield a speedup of four on six processors

and a speedup of five on ten.

E-20

%'.%%

0%

Y0

% 'V

Table 4. Parallel Boruvka on 350 x 350 Grid Graph
IVI - 122,500 IEI - 244,300
(cost range is 0- 100,000)

Cpu 's PARALLEL BORUVKA PARALLEL BORUVKA
(includes process creation) (excludes process creation)

time speedup time speedup

1+ 98.21 1.00 98.21 1.00

1* 112.57 .87 103.86 .95

2 66.93 1.47 57.49 1.71

3 50.26 1.95 40.92 2.40

4 40.25 2.44 29.95 3.28

* 5 39.00 2.52 26.52 3.70

6 38.69 2.54 23,45 4.19

7 37.70 2.60 21.62 4.54

8 40.98 2.40 21.58 4.55

9 42.49 2.31 20.85 4.71

--a 10 41.30 2.38 17.52 5.61

best sequential BORLVKA code
*parallel code run with a single processor

.E-21
a.N

Table 5. Parallel Prim on C - [VEJ with Ivi - 900 and IJE - 404,550

(cost range is 0 - 100,000)

cpu's PARALLEL PRIM PARALLEL PRIM

(includes process creation) (excludes process creation)

time speedup time speedup

'I 1+ 24.88 1.00 24.88 1.00

1* 27.09 .92 26.98 .92

2 23.35 1.07 15.12 1.65

3 22.63 1.10 10.84 2.30

4 25.31 .98 8.74 2.85

5 28.43 .88 7.39 3.37

6 31.54 .79 6.6; 3.76

7 36.51 .68 6.03 4.13

- 8 41.08 .61 5.62 4.43

9 46.04 .54 5.30 4.69

10 50.54 .49 5.02 4.96

i+

best sequential PARALLEL PRIM code
S* parallel code run with a single processor

"I

Table 5 gives the computational results with Prim's algorithm. No speedup

is achievable for a one-time solution. For environments in vhich the minimum

spanning tree problem is a subproblem, speedups of three and five were obtained

on five and ten processors, respectively.

E-22

.-.,

,e ,r ."w. ... ;., , . . . w W . . .~* . " "r*
"r

, , .,, "P V ". % P , 'W - %"

N' VI. SUM1ARY AND CONCLUSIONS

Five computer codes were developed to solve the minimum spanning tree

'- problem on a sequential machine. These codes were computationally compared on
'"

both grid graphs and random graphs whose densities varied from 5Z to 100%. The

implementation of Boruvka's algorithm (see [15, p. 277)) was the best for grid

graphs. An implementation of Prim's algorithms using a sparse data representa-

tion (see [15, p. 273]) was best for high density random graphs while an imple-

mentation of Prim's algorithm using a d-heap (see [19, p. 77]) was best for

lower density random problems. Kruskal's algorithm using a quicksort is the

most robust of all the implementations, ranking eithe'7 second or third in all

computational tests. Both Boruvka's and Prim's algorithms were parallelized by

the method of data partitioning (also called homogeneous multitasking). This

.. involves creating multiple, identical processes and assigning a portion of the

a. adata to each processor. For the environment in which a minimal spanning tree

. problem is a subproblem within a larger system, speedups of five on ten

processors were achieved with both Prim's and Boruvka's algorithms. The

overhead for parallel processing on the Balance 21000 negates most of the

benefits of parallel processing for the first solution of the minimal spanning

tree.

E,-

a.. E2

-p.

REFERENCES

1. Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Desien and Analysis of
" Computer Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

2. Akl, S., "An Adaptive and Cost-Optimal Parallel Algorithm for Minimum
Spanning Trees," Computine, 36 (1986) 271-277.

3. Ali, I., and J. Kennington, "The Asymmetric M-Travelling Salesman Problem:
A Duality Based Branch-And-Bound Algorithm," Discrete Aplied Mathematics,
13 (1986) 259-276.

4. Christofides, N., Granh Theory: An Algorithmic Approach, Academic Press,
New York, New York (1975).

5. Deo, N., and Y. Yoo, "Parallel Algorithms for the Minimum Spanning Tree
Problem," Proceedines of the 1981 International Conference on Parallel
Processing, IEEE Computing Society Press, (1981) 188-189.

6. Held, M., and R. Karp, "The Travelling Salesman Problem and Minimum
Spanning Trees," Operations Research, 18 (1970) 1138-1162.

7. Held, M., and R. Karp, "The Travelling Salesman Problem and Minimum
* Spanning Trees: Part II," Mathematical Programmini, 1 (1970) 6-25.

8. Knuth, D. E., Sortine and Searching, Addison-Wesley, Reading,
Massachusetts (1973).

9. Kwan, S., amd W. Ruzzo, "Adaptive Parallel Algorithms for Finding Minimum
Spanning Trees," Proceedings of the 1984 International Conference on
Parallel Processine, IEEE Computing Society Press, (1984) 439-443.

10. Lavallee, I., and G. Roucairol, "A Fully Distributed (Minimal) Spanning
"' Tree Algorithm," Information Processing Letters, 23 (1986) 55-62.

11. Lavallee, I., "An Efficient Parallel Algorithm for Computing a Minimum
Spanning Tree," Parallel Computing 83, (1984) 259-262.

12. Nath, D., and S. Maheshwari, "Parallel Algorithms for the Connected
Components and Minimal Spanning Tree Problems," Information Processing
Letters, 14, 1 (1982) 7-11.

13. Osterhaug, A., Guide to Parallel Programming on Sequent Computer Systems,
[. Sequent Computer Systems, Inc., Beaverton, Oregon (1986).

14. Parallel Comnuters and ComDutations, Editors 1. van Leevwen and J. L
.Z." Lenstra, Center for Mathematics and Computer Science, Amsterdam, The

Netherlands, (1985).

* 15. Papadimitriou, C. and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey (1982).

E-24

% V

0J
.Y5Y.

KV. 1 W.Y YV '. V |W.VVV V .X' 9, , 'V w' •

16. Pawagi, S. and I. Ramakrishnan, "An O(log
n) Algorithm for Parallel Update

of Minimum Spanning Trees," Information Processing Letters, 22 (1986) 223-
229.

17. Quinn, M. J., Designine Efficient Algorithms for Parallel CoMDuters,
McGraw-Hill, New York, New York (1987).

18. Sedgenwick, R., Algorithms, Addison-Wesley, Reading, Massachusetts
(1983).

19. Tarjan, R. E., Data Structures and Network Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1983).

%'4

4.:
.

m ..

,-

* ":

' !~
4.

P E- 5

M ISSION
Of

Rmne Air Development Center
RAVC pZans and execu.tes tes~eakch, de.ve>tpment, te.st
and seected acqu.L4ition pt'ogt'am~s in .suppo'tLt o6g Comnmand, Cont'toZ, Communications and InteZigence
(C3 1) activt-4e.6. Tehnicate and enginetinufg
suc~ppot~t wiv.thin a'LeaS o6 competence is~ pttcvided to
ESV PRtogkLam 066ice6 (POs) and othet ESV eZemrent5
tCo peJL6c')m e6ectve acqui .ition o6 C3 1 syqtem5s.
The ata~ o6 .technicat competence .nctude
communyucatioLns, command and conttoP.., batCPte

managemnnt, in6otma.C.Zon ptocce>s. ng, sutvetfi~ance~sns6 i ntefZZ.Zence data cotection and handZbig,
so.~cbd s5tatCe s~ciences~, etecttomagnetkc~s, and
r-uagation, and etectCtc'nc, main.tai~nab.iity,

aa~d cormpabitit.t

-.-.-.--.-.-......-- -- ,-

